Skip to main content
Log in

Fluctuations and lack of self-averaging in the kinetics of domain growth

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The fluctuations occurring when an initially disordered system is quenched at timet=0 to a state, where in equilibrium it is ordered, are studied with a scaling theory. Both the mean-sizel(t) d of thed-dimensional ordered domains and their fluctuations in size are found to increase with the same power of the time; their relative size fluctuations are independent of the total volumeL d of the system. This lack of self-averaging is tested for both the Ising model and the φ4 model on the square lattice. Both models exhibit the same lawl(t)=(Rt) x withx=1/2, although the φ4 model has “soft walls”. However, spurious results withx≷1/2 are obtained if “bad” pseudorandom numbers are used, and if the numbern of independent runs is too small (n itself should be of the order of 103). We also predict a critical singularity of the rateR∝(1−T/T c)v(z−1/x),v being the correlation length exponent,z the dynamic exponent.

Also quenches to the critical temperatureT c itself are considered, and a related lack of self-averaging in equilibrium computer simulations is pointed out for quantities sampled from thermodynamic fluctuation relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Extensive lists of references can be found in the recent review articles Refs. 2, 3.

  2. Binder, K., Heermann, D.W.: In: Scaling phenomena in disordered systems. Pynn, R., Skjeltorp, T. (eds.). New York: Plenum Press 1985

    Google Scholar 

  3. Binder, K.: In: Proceedings of the Discussion Meeting on “Phase Transitions on Solid Surfaces”, Erlangen 1985 (in press)

  4. Sadiq, A., Binder, K.: J. Statist. Phys.35, 617 (1984)

    Google Scholar 

  5. Gawlinski, E.T., Grant, M., Gunton, J.D., Kaski, K.: Phys. Rev. B3, 281 (1985)

    Google Scholar 

  6. Mouritsen, O.G.: Phys. Rev. B28, 3150 (1983); B31, 2613 (1985); B32, 1632 (1985)

    Google Scholar 

  7. Grest, G.S., Srolovitz, D.J., Anderson, M.P.: Phys. Rev. Lett.52, 1321 (1984); Grest, G.S., Srolovitz, D.J.: Phys. Rev. B32, 3014 (1985); Sahni, P.S., Grest, G.S., Safran, S.A.: Phys. Rev. Lett.50, 60 (1983); Grest, G.S., Safran, S.A., Sahni, P.S.: J. Appl. Phys.55, 2432 (1984)

    Google Scholar 

  8. Mouritsen, O.G.: Phys. Rev. Lett.56, 850 (1986)

    Google Scholar 

  9. Lifshitz, I.M.: Sov. Phys. JETP15, 939 (1962)

    Google Scholar 

  10. Lifshitz, I.M., Slyozov, V.V.: J. Phys. Chem. Solids19, 35 (1961)

    Google Scholar 

  11. Allen, S.W., Cahn, J.W.: Acta Metall27, 1085 (1979)

    Google Scholar 

  12. Ohta, T., Jasnow, D., Kawasaki, K.: Phys. Rev. Lett.49, 1223 (1982)

    Google Scholar 

  13. Mazenko, G.F., Zannetti, M.: Phys. Rev. Lett.53, 2106 (1984)

    Google Scholar 

  14. Binder, K. (ed.): Monte Carlo methods in statistical physics. Berlin, Heidelberg, New York: Springer 1979; Applications of the Monte Carlo method in statistical physics. Berlin, Heidelberg, New York: Springer 1984

    Google Scholar 

  15. Vinals, J., Gunton, J.D.: Surf. Sci.157, 473 (1985)

    Google Scholar 

  16. Grest, G.S., Sahni, P.S.: Phys. Rev. B30, 2261 (1984)

    Google Scholar 

  17. This type of scaling behaviour and universality was first emphasized in the context of the later stages of spinodal decomposition, see Binder, K., Stauffer, D.: Phys. Rev. Lett.33, 1006 (1974); Binder, K.: Phys. Rev. B15, 4425 (1977); Binder, K., Billotet, C., Mirold, P.: Z. Phys. B-Condensed Matter30, 183 (1978); Billotet, C., Binder, K.: Z. Phys. B-Condensed Matter32, 195 (1979)

    Google Scholar 

  18. Furukawa, H.: Phys. Rev. A29, 2160 (1984); A30, 1052 (1984); and preprints

    Google Scholar 

  19. Weeks, J.D.: J. Chem. Phys.67, 3106 (1977)

    Google Scholar 

  20. Milchev, A., Heermann, D.W., Binder, K.: J. Statist. Phys. (in press)

  21. Filk, Th., Marcu, M., Fredenhagen, K.: DESY preprint 85-098

  22. Feller, W.: Introduction to probability theory and its application. New York 1966

  23. Landau, L.D., Lifshitz, E.M.: Statistical physics. London: Pergamon Press 1959

    Google Scholar 

  24. Binder, K.: Z. Phys. B-Condensed Matter43, 119 (1981)

    Google Scholar 

  25. For recent reviews, see Barber, M.N.: In: Phase transitions and critical phenomena. Domb, C., Lebowitz, J.L. (eds.), Vol. 8, Chap. 2. New York, London: Academic Press 1983; Binder, K.: Ferroelectrics (in press)

    Google Scholar 

  26. Hohenberg, P.C., Halperin, B.I.: Rev. Mod. Phys.49, 435 (1977)

    Google Scholar 

  27. In this section we assume the validity of hyperscaling. If hyperscaling is not valid, but one considers a situation with fully periodic boundary conditions, already (19) must be modified and the correlation length ζ is replaced by a thermodynamic lengthl∝|1−T/T c|−(y+2β)/d: then\(P_L (\psi ) = L^{{{\beta d} \mathord{\left/ {\vphantom {{\beta d} {(y + 2\beta )}}} \right. \kern-\nulldelimiterspace} {(y + 2\beta )}}} \tilde P(\psi L^{{{\beta d} \mathord{\left/ {\vphantom {{\beta d} {(y + 2\beta )}}} \right. \kern-\nulldelimiterspace} {(y + 2\beta )}}} \), |1−T/T c|−(y+2β)/d/L). For background on this point, see Binder, K., Nauenberg, M., Privman, V., Young, A.P.: Phys. Rev. B31, 1498 (1985); Brézin, E., Zinn-Justin, J.: Nucl. Phys. B257 [FS 14], 867 (1985)

    Google Scholar 

  28. If the scaling considerations of this section are translated into a description in terms of the renormalization group, 3″ would be a “dangerous irrelevant variable”: see Fisher, M.E.: Critical phenomena. In: Lecture Notes in Physics. Hahne, F.J.W. (ed.), Vol. 186. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  29. Mazenko, G.F., Valls, O.T.: Phys. Rev. B30, 6732 (1984)

    Google Scholar 

  30. Morf, R., Schneider, T., Stoll, E.: Phys. Rev. B16, 462 (1977)

    Google Scholar 

  31. Bruce, A.D.: J. Phys. A18, L-873 (1985)

    Google Scholar 

  32. See e.g. a brief remark in Ref. 5

    Google Scholar 

  33. Kirkpatrick, S., Stoll, E.: J. Comput. Phys.40, 517 (1981)

    Google Scholar 

  34. Wang, G.-C., Lu, T.-M.: Phys. Rev. Lett.50, 2014 (1983); Wu, P.K., Perepezko, J.H., Mc Kinney, J.T., Lagally, M.G.: Phys. Rev. Lett.51, 1577 (1983)

    Google Scholar 

  35. Lehmer, D.H.: Proceedings of the 2nd Symposium on Large Scale Digital Computing Machines. Vol. 142, Cambridge: Harvard University Press 1951

    Google Scholar 

  36. Tausworth, R.C.: Math. Compt.19, 201 (1968)

    Google Scholar 

  37. In MULTICS “Subroutines andI/0 Modules”, Honeywell Information Systems Inc. 1983, Louveciennes (France)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milchev, A., Binder, K. & Heermann, D.W. Fluctuations and lack of self-averaging in the kinetics of domain growth. Z. Physik B - Condensed Matter 63, 521–535 (1986). https://doi.org/10.1007/BF01726202

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01726202

Keywords

Navigation