Skip to main content
Log in

Magnetic resonance functional imaging of the brain at 4 t

  • Invited Papers
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Blood Oxygenation Level Dependent (BOLD) contrast imaging of human brain function using echo-planar imaging at 4 T gives good freedom from motion artifact, high signal-to-noise ratio/unit time, and adequate spatial resolution. Studies were made of brain activation associated with perceptual and cognitive tasks of several minutes duration.

Several cortical areas show task-dependent activity consistent across subjects, in images with a spatial resolution of 2.5 mm×2.5 mm×5 mm and a temporal resolution of up to 1 s. Multislice data were obtained at a rate of up to five slices per second. At 4 T, fractional changes of magnetic resonance (MR) image intensity up to 25% were observed.

Novel cross-correlation methods, including the effect of the temporal point-spread function associated with the relatively slow hemodynamic response of the brain, allow activation maps of the brain to be generated with statistically meaningful thresholds.

With appropriate data analysis, it is clear that oxygenation changes in large draining veins distant from active neural tissue do not dominate the changes observed, especially when brain tasks activating only a limited volume of gray matter are chosen. This is consistent with downstream dilution of blood oxygenation changes and direct optical observations of functional brain activity in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Clark VP, Courchesne E, Grafe M (1992) In vivo myeloar-chitectonic analysis of human striate and extrastriate cortex using magnetic resonance imaging.Cerebral Cortex 2 417–424.

    PubMed  Google Scholar 

  2. Brodmann K (1909)Vergleichende Lokalizationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth.

    Google Scholar 

  3. Rademacher J, Caviness VS, Steinmetz H, Galaburda AM (1993) Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology.Cerebral Cortex 3 313–329.

    PubMed  Google Scholar 

  4. Chiavaras M, Petrides M, Pandya DN (1993) Cytoarchitectonic investigation of the human prefrontal cortex (Abstract).Society for Neuroscience, Annual Meeting, Washington DC. p. 1212.

  5. Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ (1993) Functional connectivity: the principal-component analysis of large PET data sets.J Cereb Blood Flow Metab 13 5–14.

    PubMed  Google Scholar 

  6. Supek S, Aine CJ (1993) Simulation studies of multiple dipole neuromagnetic source localization: model order and limits of source resolution.EEE Trans Biomed Eng BE-40 529–540.

    Google Scholar 

  7. Kwong KK, Belliveau JW, Cheslar DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng H-M, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation.Proc NatlAcad USA 89 5675–5679.

    Google Scholar 

  8. Ogawa S et al. (1992) Intrinsic signal changes accompanying sensory stimulation—functional brain mapping with magnetic resonance imaging.Proc Natl Acad Sci USA 89 5951–5955.

    Google Scholar 

  9. Bandettini PA et al. (1992) Time course EPI of human brain function during task activation.Magn Reson Med 25 390–397.

    PubMed  Google Scholar 

  10. Turner R (1992) Magnetic resonance imaging of brain function.Am J Physiol Imag 3/4 136–145.

    Google Scholar 

  11. Mansfield P (1977) Multiplanar image formation using NMR spin echoes.J Phys C 10 L55-L58.

    Google Scholar 

  12. Belliveau JW et al. (1991) Functional mapping of the human visual cortex by magnetic resonance imaging.Science 254 716–719.

    PubMed  Google Scholar 

  13. Ogawa S, Lee T-M, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields.Magn Reson Med 14 68–78.

    PubMed  Google Scholar 

  14. Turner R, Le Bihan D, Moonen CTW, Despres D, Frank J (1991) Echo-planar time course MRI of cat brain deoxygenation changes.Magn Reson Med 22 159–166.

    PubMed  Google Scholar 

  15. Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field.Biochim Biophys Ada 714 265–270.

    Google Scholar 

  16. Brooks RA, Di Chiro G (1987) Magnetic resonance imaging of stationary blood: a review.Med Phys 14 903–913.

    PubMed  Google Scholar 

  17. Jezzard P, Heineman F, Taylor J, DesPres D, Wen H, Balaban RS, Turner R (1994) Comparison of EPI gradientecho contrast changes in cat brain caused by respiratory challenges with direct simultaneous evaluation of cerebral oxygenation via a cranial window.NMR Biomed. (in press).

  18. Fox PT, Raichle ME (1986)Proc Natl Acad Sci USA 83, 1140.

    PubMed  Google Scholar 

  19. Frostig RD, Lieke EE, Ts'o DY, Grinvald A (1990) Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in-vivo high-resolution optical imaging of intrinsic signals.Proc Natl Acad Sci USA 87 6082–6086.

    PubMed  Google Scholar 

  20. Weisskoff RM (1993) Endogenous susceptibility contrast: principles of relationship between blood oxygenation and MR signal change. InSyllabus, SMRM/SMRI Workshop on Functional MRI of the Brain, Arlington, VA. Berkeley, CA: Society of Magnetic Resonance in Medicine, p. 103.

    Google Scholar 

  21. Menon R, Ogawa S, Tank DW, Ugurbil K (1993) 4 tesla gradient recalled echo characteristics of photic stimulation-induced signal changes in the human primary visual cortex.Magn Reson Med 30 380–386.

    PubMed  Google Scholar 

  22. Turner R, Jezzard P, Wen H, Kwong KK, Le Bihan D, Zeffiro T, Balaban RS (1993) Functional mapping of the human visual cortex at 4 tesla and 1.5 tesla using deoxygenation contrast EPI.Magn Reson Med 29 281–283.

    Google Scholar 

  23. Ljunggren S (1983) A simple graphical representation of Fourier-based imaging methods.J Magn Reson 54 338–343.

    Google Scholar 

  24. Meyer CH, Hu BS, Nishimura DG, Macovski A (1992) Fast spiral coronary artery imaging.Magn Reson Med 28 202–213.

    PubMed  Google Scholar 

  25. Cohen MS, Weisskoff RM (1991) Ultra-fast imaging.Magn Reson Imaging 9 1–37.

    PubMed  Google Scholar 

  26. McKinnon G (1993) Ultrafast interleaved gradient-echo-planar imaging on a standard scanner,Magn Reson Med 30 609–616.

    PubMed  Google Scholar 

  27. Oshio K, Feinberg DA (1991) Fast T2 weighted MRI using novel gradient and spin echo (GRASE) imaging.Magn Reson Med 20 344–348.

    PubMed  Google Scholar 

  28. Stehling MK, Turner R, Mansfield P (1991) Echo-planar imaging: magnetic resonance imaging in a fraction of a second.Science 254 43–50.

    PubMed  Google Scholar 

  29. Turner R, von Kienlin M, Moonen CTW, van Zijl PCM (1990) Single-shot localized echo-planar imaging (STEAM-EPI) at 4.7 tesla.Magn Reson Med 14 401–408.

    PubMed  Google Scholar 

  30. Turner R, Le Bihan D (1990) Single-shot diffusion imaging at 2.0 tesla.J Magn Reson Med 86 445–452.

    Google Scholar 

  31. Le Bihan D, Jezzard P, Turner R, Cuenod CA, Pannier L, Prinster A (1993) Pra1ctical problems and limitations in using z-maps for processing of brain function MR images.Proc. SMRM, 12th Annual Meeting, p. 11.

  32. Le Bihan D, Turner R, Zeffiro T, Cuenod C-A, Jezzard P, Bonnerot V (1993) Activation of human primary visual cortex during visual recall: an MRI study.Proc Natl Acad Sci USA 90 11802.

    PubMed  Google Scholar 

  33. Friston K, Jezzard P, Turner R (1994) The analysis of functional MRI time series.Human Brain Mapping 1 1–19.

    Google Scholar 

  34. Hajnal JV, Oatridge A, Schwieso J, Cowan FM, Young IR, Bydder GM (1993) Cautionary remarks on the role of veins in the variability of functional imaging experiments.Proc. SMRM, 12th Annual Meeting, p. 166.

  35. Woods RP, Cherry SR, Mazziotta JC (1992) Rapid automated algorithm for aligning and reslicing PET images.JCAT 115 565–587.

    Google Scholar 

  36. Ogawa S, Menon RS, Tank DW, Kim S-G, Merkle H, Ellermann JM, Ugurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging.Biophys J 64 803–812.

    PubMed  Google Scholar 

  37. Kennan RP, Zhong J, Gore JC. (1994) Intravascular susceptibility contrast mechanisms in tissues. Magn. Reson. Med.31, 9–21.

    PubMed  Google Scholar 

  38. Lai S, Hopkins AL, Haacke EM, Wasserman BA, Buckley P, Friedman L, Meltzer H, Hedera P, Friedland R (1993) Identification of vascular structures as a major source of signal contrast in high resolution 2D and 3D functional activation imaging of the motor cortex at 1.5 T: preliminary results.Magn Reson Med 30 387–392.

    PubMed  Google Scholar 

  39. Penfield W (1933) The evidence for a cerebral vascular mechanism in epilepsy.Ann Intern Med 7 303–310.

    Google Scholar 

  40. De Yoe EA, Neitz J, Miller D, Wieser J (1993) Functional magnetic resonance imaging (FMRI) of visual cortex in human subjects using a unique video graphics stimulator.Proc. SMRM, 12th Annual Meeting, p. 1394.

  41. Tootell R. (1994) Personal communication.

  42. Turner R, Jezzard P, Le Bihan D, Prinster A, Pannier L, Zeffiro T (1993) BOLD contrast imaging of cortical regions used in processing auditory stimuli.Proc. SMRM, 12th Annual Meeting, p. 1411.

  43. Rueckert L, Appollonio I, Grafman J, Jezzard P, Johnson R, Le Bihan D, Turner R (1994) MRI functional activation of left frontal cortex during covert word production.J Neuroimaging 4 67–70.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turner, R., Jezzard, P. Magnetic resonance functional imaging of the brain at 4 t. MAGMA 2, 147–156 (1994). https://doi.org/10.1007/BF01705234

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01705234

Keywords

Navigation