Skip to main content
Log in

Distribution and morphology of dopaminergic amacrine cells in the retina of the turtle (Pseudemys scripta elegans)

  • Published:
Journal of Neurocytology

Summary

A light microscopical study of the cell types that stain by immunohistochemistry for the synthesizing enzyme for dopamine, tyrosine hydroxylase, has been performed on the retina of the turtlePseudemys scripta elegans. The immunostain can be localized to a single morphological type of amacrine cell. The cells are like A28 cells of a Golgi classification. They have medium sized dendritic fields that range in diameter from 200 to 700 μm with eccentricity from the visual streak. The amacrines have a tri-stratified dendritic tree with tiers of fine, curved dendrites ramifying in strata S1, lower S2 and the S4/5 border of the inner plexiform layer. We, like others, can find no good evidence that these cells are interplexiform cells. The dopaminergic amacrine cells have a low frequency (approximately 1300–1500 total cells in 130 mm2 retina), with their highest density occurring in the visual streak (60 cells per mm2). The density profiles fall in elliptical isodensity rings from the visual streak towards the peripheral retina. At all points on the retina the dendritic fields maintain a constant coverage factor independent of eccentricity. A comparison of the dopaminergic amacrine cells in the turtle and other vertebrate retinae is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barlow, H. B., Fitzhugh, R. &Kuffler, S. W. (1957) Change of organization in the receptive fields of the cat's retina during dark adaptation.Journal of Physiology 137, 338–54.

    Google Scholar 

  • Boycott, B. B., Dowling, J. E., Fisher, S. K., Kolb, H. &Laties, A. M. (1975) Interplexiform cells of the mammalian retina and their comparison with catecholamine-containing retinal cells.Proceedings of the Royal Society of London, Series B 191, 353–68.

    Google Scholar 

  • Brecha, N. C., Oyster, C. W. &Takahashi, E. S. (1984) Identification and characterization of tyrosine hydroxylase immunoreactive amacrine cells.Investigative Ophthalmology and Visual Science 25, 66–70.

    Google Scholar 

  • Brunken, W. J., Witkovsky, P. &Karten, H. J. (1986) Retinal neurochemistry of three elasmobranch species: an immunohistochemical approach.Journal of Comparative Neurology 243, 1–12.

    Google Scholar 

  • Burnside, B. &Nagl, B. (1983) Rehnomotor movements of the photoreceptors and retinal pigment epithelium: mechanisms and regulation. InProgress in Retinal Research, Vol. 2 (edited byOsborne, N. &Chader, G.), pp. 67–109. New York: Pergamon Press.

    Google Scholar 

  • Cajal, S. R. y (1933)Die Retina der Wirbeltiere. Wiesbaden: Bergmann.The Structure of the Retina. Translation byS. A. Thorpe &M. Glickstein (1972). Springfield: Thomas.

    Google Scholar 

  • Chino, Y. &Hashimoto, Y. (1985) Identification of dopaminergic cells in the inner retina of Japanese dace.Investigative Ophthalmology and Visual Science, Suppl.26, 116 (Abstract).

    Google Scholar 

  • Cohen, J. L. &Dowling, J. E. (1983) The role of the retinal interplexiform cell: effects of 6-hydroxydopamine on the spatial properties of carp horizontal cells.Brain Research 264, 307–10.

    Google Scholar 

  • Dearry, A. &Burnside, B. (1986) Dopaminergic regulation of cone retinomotor movement in isolated Teleost retinas: 1. Induction of cone contraction is mediated by D-2 receptors.Journal of Neurochemistry 46, 1006–21.

    Google Scholar 

  • Dowling, J. E. (1986) Dopamine: a retinal neuromodulator?Trends in Neuroscience 9, 236–40.

    Google Scholar 

  • Dowling, J. E. &Ehinger, B. (1975) Synaptic organization of the amine-containing interplexiform cells of the goldfish and Cebus monkey retinas.Science 188, 270–3.

    Google Scholar 

  • Dowling, J. E. &Ehinger, B. (1978) The interplexiform cell system: I. Synapses of the dopaminergic neurons of the goldfish retina.Proceedings of the Royal Society of London, Series B 201, 7–26.

    Google Scholar 

  • Dowling, J. E., Ehinger, B. &Floren, I. (1980) Fluorescence and electron microscopical observations on the amine-accumulating neurons of the Cebus monkey retina.Journal of Comparative Neurology 192, 665–85.

    Google Scholar 

  • Ehinger, B. (1982) Neurotransmitter systems in the retina.Retina 2, 305–21.

    Google Scholar 

  • Ehinger, B., Falck, B. &Laties, A. M. (1969) Adrenergic neurons in teleost retina.Zeitschrift für Zellforschung und mikroskopische Anatomie 97, 285–97.

    Google Scholar 

  • Eldred, W. D., Zucker, C., Karten, H. J. &Yazulla, S. (1983) Comparisons of fixation and penetration enhancement techniques for use in ultrastructural immunocytochemistry.Journal of Histochemistry and Cytochemistry 31, 285–92.

    Google Scholar 

  • Engbretson, G. A. &Battelle, B.-A. (1987) Serotonin and dopamine in the retina of a lizard.Journal of Comparative Neurology 257 140–7.

    Google Scholar 

  • Frederick, J. M., Rayborn, M. E., Laties, A. M., Lam, D. M. K. &Hollyfield, J. G. (1982) Dopaminergic neurons in the human retina.Journal of Comparative Neurology 210, 65–79.

    Google Scholar 

  • Gallego, A. (1971) Cellules interplexiformes en la retina del gato.Archives Societe Espana Oftalmologie 31, 299–304.

    Google Scholar 

  • Gerschenfeld, H. M., Neyton, J., Piccolino, M. &Witkovsky, P. (1982) L-horizontal cells of the turtle: network organization and coupling modulation.Biomedical Research 3, 21–34.

    Google Scholar 

  • Hedden, W. L. &Dowling, J. E. (1978) The interplexiform cell system: II. Effects of dopamine on goldfish retinal neurones.Proceedings of the Royal Society of London, Series B 201, 27–55.

    Google Scholar 

  • Iuvone, P. M., Galli, C. L., Garrison-Gund, C. K. &Neff, N. H. (1978) Light stimulates tyrosine hydroxylase activity and dopamine synthesis in retinal amacrine neurons.Science 202, 901–2.

    Google Scholar 

  • Kolb, H. (1982) The morphology of the bipolar cells, amacrine cells and ganglion cells in the retina of the turtlePseudemys scripta elegans.Philosophical Transactions of the Royal Society of London, Series B 298, 355–93.

    Google Scholar 

  • Kolb, H. &Nelson, R. (1985) Functional neurocircuitry of amacrine cells in the cat retina. InNeurocircuitry of the Retina. A Cajal Memorial (edited byGallego, A. &Gouras, P.), pp. 215–32. New York: Elsevier Press.

    Google Scholar 

  • Kolb, H. &Wang, H-H. (1985) The distribution of photoreceptors, dopaminergic amacrine cells and ganglion cells in the retina of the North American opossum (Didelphis virginiana).Vision Research 25, 1207–21.

    Google Scholar 

  • Kolb, H. &West, R. W. (1977) Synaptic connections of the interplexiform cell in the retina of the cat.Journal of Neurocytology 6, 155–70.

    Google Scholar 

  • Kramer, S. G. (1971) Dopamine: a retinal neurotransmitter. 1. retinal uptake, storage and light stimulated release of 3H dopamine in vivo.Investigative Ophthalmology 10, 438–52.

    Google Scholar 

  • Laties, A. M. &Jacobowitz, D. (1966) A comparative study of the autonomic innervation of the eye in monkey, cat and rabbit.Anatomical Record 156, 383–95.

    Google Scholar 

  • Mangel, S. C. &Dowling, J. E. (1985) Responsiveness and receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine.Science 229, 1107–9.

    Google Scholar 

  • Marchiafava, P. L. (1976) Centrifugal actions on amacrine and ganglion cells in the retina of the turtle.Journal of Physiology 255, 137–55.

    Google Scholar 

  • Mariani, A. P., Kolb, H. &Nelson, R. (1984) Dopamine-containing amacrine cells of rhesus monkey retina parallel rods in spatial distribution.Brain Research 322, 1–7.

    Google Scholar 

  • Maturana, H. R. &Frenk, S. (1965) Synaptic connections of the centrifugal fibers in the pigeon retina.Science 150, 359–61.

    Google Scholar 

  • Nakamura, Y., McGuire, B. A. &Sterling, P. (1980) Interplexiform cell in cat retina: identification by selective uptake of 3H GABA.Proceedings of the National Academy of Sciences USA 77, 658–61.

    Google Scholar 

  • Negishi, K. &Drujan, B. D. (1979) Reciprocal changes in center and surrounding S-potentials of fish retina in response to dopamine.Neurochemistry Research 4, 313–18.

    Google Scholar 

  • Negishi, K., Kato, S., Teranishi, T., Kiyama, H., Katayama, Y. &Tohyama, M. (1985) So-called interplexiform cells immunoreactive to tyrosine hydroxylase or somatostatin in rat retina.Brain Research 346, 136–40.

    Google Scholar 

  • Nelson, R. &Kolb, H. (1985) A17: a broad-field amacrine cell in the rod system of the cat retina.Journal of Neurophysiology 54, 592–614.

    Google Scholar 

  • Nguyen-Legros, J., Botteri, C., Le Hoang, P., Vigny, A. &Gay, M. (1984) Morphology of primate's dopaminergic amacrine cells as revealed by TH-like immunoreactivity on retinal flat-mounts.Brain Research 295, 145–53.

    Google Scholar 

  • Nguyen-Legros, J., Versaux-Botteri, C., Vigny, A. &Raoux, N. (1985) Tyrosine hydroxylase immunohistochemistry fails to demonstrate dopaminergic interplexiform cells in the turtle retina.Brain Research 339, 323–8.

    Google Scholar 

  • Oyster, C. W., Takahashi, E. S. &Brecha, N. C. (1985) Morphology and distribution of tyrosine hydroxylase-like immunoreactive neurons in the cat retina.Proceedings of the National Academy of Sciences USA 82, 6335–9.

    Google Scholar 

  • Piccolino, M., Neyton, J. &Gerschenfeld, H. M. (1984) Decrease of gap-junction permeability induced by dopamine and cyclic adenosine 3′∶5′-monophosphate in horizontal cells of turtle retina.Journal of Neuroscience 4, 2477–88.

    Google Scholar 

  • Pierce, M. E. &Besharse, J. C. (1985) Circadian regulation of retinomotor movements. I. Interaction of melatonin and dopamine in the control of cone lengths.Journal of General Physiology 86, 671–89.

    Google Scholar 

  • Pourcho, R. G. (1982) Dopaminergic amacrine cells in the cat retina.Brain Research 252, 101–9.

    Google Scholar 

  • Stell, W. K. (1985) Putative peptide transmitters, amacrine cell diversity and function in the inner plexiform layer. InNeurocircuitry of the Retina: A Cajal Memorial (edited byGallego, A. &Gouras, P.) pp. 171–187. New York: Elsevier.

    Google Scholar 

  • Stell, W. K., Walker, S. E., Chohan, K. S. &Ball, A. K. (1984) The goldfish nervus terminalis: a luteinizing hormone-releasing hormone and molluscan cardioexcitatory peptide immunoreactive olfactoretinal pathway.Proceedings of the National Academy of Sciences USA 82, 940–4.

    Google Scholar 

  • Teranishi, T. &Negishi, K. (1986) Dendritic morphology of dopaminergic cells revealed by intracellular injection of Lucifer yellow in fixed carp retina.Brain Research 370, 196–9.

    Google Scholar 

  • Ternashi, T., Negishi, K. &Kato, S. (1983) Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina.Nature 301, 243–6.

    Google Scholar 

  • Törk, I. &Stone, J. (1979) Morphology of catecholamine-containing amacrine cells in the cat's retina as seen in retinal whole mounts.Brain Research 169, 261–73.

    Google Scholar 

  • Versaux-Botteri, C., Nguyen-Legros, J., Vigny, A. &Raoux, N. (1984) Morphology, density and distribution of tyrosine hydroxylase-like immunoreactive cells in the retina of mice.Brain Research 301, 192–7.

    Google Scholar 

  • Wässle, H. &Riemann, H. J. (1978) The mosaic of nerve cells in the mammalian retina.Proceedings of the Royal Society of London, Series B 200, 441–61.

    Google Scholar 

  • Watt, C. B., Li, T., Lam, D. M. K. &Wu, S. (1987) Autoradiographical localization of classical neurotransmitters in the larval tiger salamander retina.Investigative Ophthalmology and Visual Science Suppl. 28, 349 (Abstract).

    Google Scholar 

  • Weiler, R. (1985) Afferent and efferent peptidergic pathways in the turtle retina. InNeurocircuitry of the Retina: A Cajal memorial, (edited byGallego, A. &Gouras, P.), pp. 245–56. New York: Elsevier.

    Google Scholar 

  • Wirz-Justice, A., Daprada, M. &Reme, C. (1984) Crcadian rythm in rat retinal dopamine.Neuroscience Letters 45, 21–5.

    Google Scholar 

  • Witkovsky, P. (1971) Synapses made by myelinated fibers running to teleost and elasmobranch retinas.Journal of Comparative Neurology 142, 205–22.

    Google Scholar 

  • Witkovsky, P., Alones, V. &Piccolino, M. (1987) Morphological changes induced in turtle retinal neurons by exposure to 6-hydroxydopamine and 5-6-dihydroxytryptamine.Journal of Neurocytology 16, 55–67.

    Google Scholar 

  • Witkovsky, P., Eldred, W. &Karten, H. J. (1984) Catecholamine- and indoleamine-containing neurons in the turtle retina.Journal of Comparative Neurology 228, 217–25.

    Google Scholar 

  • Zucker, C. L. &Dowling, J. E. (1986) Dopaminergic interplexiform cells (DA-IPC) receive input from FMRF-amide immunoreactive (IR) centrifugal fibers: a light and electron microscopical double label analysis.Investigative Ophthalmology and Visual Science, Suppl.27, 183. (Abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolb, H., Cline, C., Wang, H.H. et al. Distribution and morphology of dopaminergic amacrine cells in the retina of the turtle (Pseudemys scripta elegans). J Neurocytol 16, 577–588 (1987). https://doi.org/10.1007/BF01637651

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01637651

Keywords

Navigation