Skip to main content
Log in

Therapeutic potential for blockade of the CD40 ligand, gp39

  • Special Articles
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Conclusions

There is mounting evidence supporting a critical role for gp39-CD40 interactions in the development of both humoral and cellular immune responses. It has been shown that gp39 and CD40 are critical for the development and generation of antibody responses and memory B cells. Evidence for this ligand receptor pair being involved in other types of immune responses is constantly emerging. Experiments in the GVHD system as well as the ability of B cells to tolerize T cells in the presence of anti-gp39 suggest that gp39 and CD40 are also important for the generation of cellular immune responses. The effect on cellular immune responses may be through the control of costimulatory molecules necessary for proper antigen presentation and stimulation. It has been shown that CD40 can control costimulatory molecule expression on several types of antigen-presenting cells; this may be a critical step in the regulation of a cell's ability to present antigen. The role of gp39 and CD40 in the regulation of cytokines, nitric oxide production, and extravasation of cells is just being elucidated but this is potentially yet another tier of immune responses upon which gp39 may have a regulatory effect. Thus, because gp39-CD40 interactions are critical in both the efferent and the afferent arms of the immune response, this ligand-receptor pair is a highly attractive therapeutic target. Blockade of this interaction may lead to enhanced survival of allografts and transplants as well as potentially being able to inhibit a wide spectrum of autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Foy TM, Aruffo A, Ledbetter JA, Noelle RJ: In vivo CD40-gp39 interactions are essential for thymus-dependent immunity. II. Prolonged in vivo suppression of primary and secondary humoral immune responses by an antibody targeted to the CD40 ligand, gp39. J Exp Med 178:1567–1575, 1993

    PubMed  Google Scholar 

  2. Van den Eertwegh AJM, Noelle RJ, Roy M, Shepherd DM, Aruffo A, Ledbetter JA, Boersma WJA, Claassen E:In vivo CD40-gp39 interactions are essential for thymus-dependent immunity. I. CD40-gp39 interactions are essential for thymus dependent humoral immunity and identify sites of cognate interactions in vivo. J Exp Med 178:1555–1565, 1993

    PubMed  Google Scholar 

  3. Foy TM, Laman JD, Ledbetter JA, Aruffo A, Claassen E, Noelle RJ: gp39-CD40 interactions are essential for germinal center formation and the development of B cell memory. J Exp Med 180:157–164, 1994

    PubMed  Google Scholar 

  4. Gray D, Siepmann K, Wohlleben G: CD40 ligation in B cell activation, isotype switching and memory development. Semin Immunol 6:303–310, 1994

    PubMed  Google Scholar 

  5. Allen RC, Armitage RJ, Conley ME, Rosenblatt H, Jenkins NA, Copeland NG, Bedell MA, Edelhoff S, Disteche J, Simoneaux DK, Fanslow WC, Belmont J, Spriggs MK: CD40 ligand gene defects responsible for X-linked hyper-IgM Syndrome. Science 259:990–993, 1993

    PubMed  Google Scholar 

  6. Aruffo A, Farrington M, Hollenbaugh D, Li X, Milatovich A, Nonoyama S, Bajorath J, Grosmaire LS, Stenkamp R, Neubauer M, Roberts RL, Noelle RJ, Ledbetter JA, Francke U, Ochs HD: The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell 72:291–300, 1993

    PubMed  Google Scholar 

  7. DiSanto JP, Bonnefoy JY, Gauchat JF, Fischer A, de Saint Basile G: CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature 361:541–543, 1993

    PubMed  Google Scholar 

  8. Korthauer U, Graf D, Mages HW, Brieres F, Padayachee M, Malcolm S, Ugazio AG, Notarangelo LD, Levinsky RL, Kioczek A: Defective Expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature 361:539, 1993

    PubMed  Google Scholar 

  9. Kawabe T, Naka T, Yoshida K, Tanaka T, Fujiwara H, Suematsu S, Yoshida N, Kishimoto T, Kikutani H: The immune responses in CD40 deficient mice: Impaired immunoglobulin class switching and germinal center formation. Immunity (in press), 1994

  10. Castigli E, Alt FW, Davidson L, Bottaro A, Mizoguchi E, Bhan AK, Geha RS: CD40-deficient mice generated by recombination-activating gene-2-deficient blastocyst complementation. Proc Natl Acad Sci 91:12135–12139, 1994

    PubMed  Google Scholar 

  11. Xu J, Foy TM, Laman JD, Dunn JJ, Waldschmidt TJ, Elsemore J, Noelle RJ, Flavell RA: Mice deficient for the CD40 ligand. Immunity 1:423–431, 1994

    PubMed  Google Scholar 

  12. Renshaw BR, Fanslow W, Armitage RJ, Campbell KA, Liggitt D, Wright B, Davison BL, Maliszewski CR: Humoral immune responses in CD40 ligand-deficient mice. J Exp Med 180:1889–1900, 1994

    PubMed  Google Scholar 

  13. Clark EA: CD40: A cytokine receptor in search of a ligand. Tissue Antigens 36:33–36, 1990

    PubMed  Google Scholar 

  14. Alderson MR, Armitage RJ, Tough TW, Strockbine L, Fanslow WC, Spriggs MK: CD40 expression by monocytes: Regulation by cytokines and activation of monocytes by the ligand for CD40. J Exp Med 178:669–674, 1993

    PubMed  Google Scholar 

  15. Caux C, Massacrier C, Vanbervliet B, Dubois B, Van KC, Durand I, Banchereau J: Activation of human dendritic cells through CD40 cross-linking. J Exp Med 180:1263–1272, 1994

    PubMed  Google Scholar 

  16. Karmann K, Hughes CW, Schechner J, Fanslow WC, Pober JS: CD40 on human endothelial cells: Inducibility by cytokines and functional regulation of adhesion molecule expression. Proc Natl Acad Sci USA 92:4342–4346, 1995

    PubMed  Google Scholar 

  17. Hollenbaugh D, Mischel-Petty N, Edwards CP, Simon JC, Denfield RW, Kiener PA, Aruffo A: Expression of functional CD40 by vascular endothelial cells. J Exp Med 182:33–40, 1995

    PubMed  Google Scholar 

  18. Galy AHM, Spits H: CD40 is functionally expressed on human thymic epithelium. J Immunol 149:775–782, 1992

    PubMed  Google Scholar 

  19. Caux C, Massacrier C, Vanbervliet B, Dubois B, Van Kooten C, Durand I, Banchereau J: Activation of human dendritic cells through CD40 cross-linking. J Exp Med 180:1263–1272, 1994

    PubMed  Google Scholar 

  20. Roy MA, Aruffo A, Ledbetter JA, Linsley P, Kehry M, Noelle RJ: Studies on the independence of gp39 and B7 expression and function during antigen-specific immune responses. Eur J Immunol 25:596–603, 1994

    Google Scholar 

  21. Buhlmann JE, Foy TM, Aruffo A, Crassi KM, Ledbetter JA, Green WR, Xu JC, Shultz LD, Roopesian D, Flavell RA, Fast L, Noelle RJ, Durie FH: In the absence of a CD40 signal, B cells are tolerogenic. Immunity 2:645–653, 1995

    PubMed  Google Scholar 

  22. Tian L, Noelle RJ, Lawrence DA: Activated T cells enhance nitric oxide production by murine splenic macrophages through gp39 and LFA-1. Eur J Immunol 25:306–309, 1995

    PubMed  Google Scholar 

  23. Shu U, Kiniwa M, Wu CY, Maliszewski C, Vezzio N, Hakimi J, Gately M, Delepesse G: Activated T cells induce interleukin 12 production by monocytes via CD40-CD40 ligand interaction. Eur J Immunol 25:1125–1128, 1995

    PubMed  Google Scholar 

  24. Ferrara JLM, Deeg HJ: Graft-versus-host disease. NE J Med 324:667–674, 1991

    Google Scholar 

  25. Antin JH, Ferrara JLM: Cytokine dysregulation and acute graftversus-host disease. Blood 80:2964–2968, 1992

    PubMed  Google Scholar 

  26. Durie FH, Aruffo A, Ledbetter JA, Crassi KM, Green WR, Noelle RJ: Antibody to the ligand of CD40, gp39, blocks the occurrence of the acute and chronic forms of graft-versus-host disease. J Clin Invest 94:1333–1338, 1994

    PubMed  Google Scholar 

  27. Hsieh C-S, Macatonia SE, Tripp CS, Wolf SF, O'Garra A, Murphy KM: Development of Th1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260:547, 1993

    PubMed  Google Scholar 

  28. Manetti R, Parronchi P, Guidizi MG, Piccinni M-P, Maggi E, Trinchieri G, Romagnaini S: Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4 producing cells. J Exp Med 177:1199, 1993

    PubMed  Google Scholar 

  29. Seder RA, Gazzinelli R, Sher A, Paul WE: Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferonγ production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci USA 90:10188, 1993

    PubMed  Google Scholar 

  30. Hoffman RA, Langrehr JM, Wren SM, Dull KE, Ildstad ST, McCarthy SA, Simmons RL: Characterization of the immunosuppressive effects of nitric oxide in graft vs host disease. J Immunol 151:1508–1518, 1993

    PubMed  Google Scholar 

  31. Alexander JW, Babcock GF, First MR, Davies CB, Madden RL, Munda R, Penn I, Fidler JP, Cofer BR, Stephens G,et al.: The induction of immunologic hyporesponsiveness by preoperative donor-specific transfusions and cyclosporine in human cadaveric transplants. A preliminary trial. Transplantation 53:423–427, 1992

    PubMed  Google Scholar 

  32. Bean MA, Mickelson E, Yanagida J, Ishioka S, Brannen GE, Hansen JA: Suppressed antidonor MLC responses in renal transplant candidates conditioned with donor-specific transfusions that carry the recipient's noninherited maternal HLA haplotype. Transplantation 49:382–386, 1990

    PubMed  Google Scholar 

  33. Eynon EE, Parker DC: Small B cells as antigen-presenting cells in the induction of T cell tolerance to soluble protein antigens. J Exp Med 175:131–138, 1992

    PubMed  Google Scholar 

  34. Fuchs EJ, Matzinger P: B cells turn off virgin but not memory T cells. Science 1156–1159, 1992

  35. Finkelman FD, Lees A, Morris SC: Antigen presentation by B lymphocytes to CD4+ T cells in vivo: Importance of B lymphocyte and T lymphocyte activation. Semin Immunol 4:247, 1992

    PubMed  Google Scholar 

  36. Kreiger JI, Grammer SF, Grey HM, Chestnut RW: Antigen presentation by splenic B cells: Resting B cells are ineffective, whereas activated B cells are effective accessory cell for T cell responses. J Immunol 135:2937–2946, 1985

    PubMed  Google Scholar 

  37. Parker DC: T cell-dependent B cell activation. Annu Rev Immunol 11:331–360, 1993

    PubMed  Google Scholar 

  38. Parker DC, Greiner DL, Phillips NE, Appel MC, Steele AW, Durie FH, Noelle RJ, Mordes JP, Rossini AA: Survival of mouse pancreatic islet allografts in recipients treated with allogeneic small lymphocytes and antibody to CD40 Ligand. Proc Natl Acad Sci 92:9560–9564.

  39. Durie FH, Fava RA, Foy TM, Ledbetter JA, Noelle RJ: Prevention of collagen-induced arthritis with an antibody to gp39, the ligand for CD40. Science 261:1328–1330, 1993

    PubMed  Google Scholar 

  40. Holmdahl R, Klareskog L, Rubin K, Bjork J, Smedegard G, Jonsson R, Anderson M: Role of T lymphocytes in mutine collagen induced arthritis. 19:295, 1986

    Google Scholar 

  41. Seki N, Sudo Y, Mizuhara H, Orito K, Imasaki A, Ono S, Hamaoka T, Senoh H, Fujiwara H: Type II collagen-induced murine arthritis: Induction of arthritis depends on antigenpresenting cell function as well as susceptibility of host to an anticollagen immune response. J Immunol 148:3093–3099, 1992

    PubMed  Google Scholar 

  42. Germann T, Szeliga J, Hess H, Storkel S, Podlaski FJ, Gately MK, Schmitt E, Rude E: Administration of interleukin 12 in combination with type II collagen induces severe arthritis in DBA/1 mice. Proc Natl Acad Sci USA 92:4823–4827, 1995

    PubMed  Google Scholar 

  43. Datta SK, PH, Berry D: Induction of a cationic shift in IgG anti-DNA autoantibodies. Role of T helper cells with classical and novel phenotypes in three murine models of lupus nephritis. J Exp Med 165:1252–1268, 1987

    PubMed  Google Scholar 

  44. Sainis K, Datta SK: CD4+ T cell lines with selective patterns of autoreactivity as well as CD4-/CD8- T helper lines augment the production of idiotypes shared by pathogenic anti-DNA autoantibodies in the NZB X SWR model of lupus nephritis. J Immunol 140:2215, 1988

    PubMed  Google Scholar 

  45. Ando DG, Sercarz EE, Hahn BH: Mechanisms of T and B cell collaboration in the in vitro production of anti-DNA antibodies in the NZB/NZW F1 murine SLE model. J Immunol 138:3185, 1987

    PubMed  Google Scholar 

  46. Naiki M, Chiang B-L, Cawley D, Ansari A, Rozzo SJ, Kotzin BL, Gershwin ME: Generation and characterization of cloned helper T cell lines for anti-DNA responses in NZB.H-2bm12 mice. J Immunol 149:4109, 1992

    PubMed  Google Scholar 

  47. Diamond B, Katz JB, Paul E, Aranow C, Lustgarten D, Scharff MD: The role of somatic mutation in the pathogenic anti-DNA response. Annu Rev Immunol 10:731, 1992

    PubMed  Google Scholar 

  48. Mohan C, Adams S, Stanik V, Datta SK: Nucleosome: A major immunogen for pathogenic autoantibody-inducing T cells of lupus. J Exp Med 177:1367–1381, 1993

    PubMed  Google Scholar 

  49. Mamula MJ, Fatenejad S, Craft J: B cells process and present lupus autoantigens that initiate autoimmune T cell responses. J Immunol 152:1453, 1994

    PubMed  Google Scholar 

  50. Mohan C, Shi Y, Laman JD, Datta SK: Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J Immunol 154:1470–1480, 1995

    PubMed  Google Scholar 

  51. Early GC, Laman JD, Zhao W, Noelle RJ, Burns CM: Anti-CD40 ligand antibody treatment of NZB/NZW mice prevents the development of lupus-like nephritis without generating an anti-antibody response in responding mice (submitted for publication)

  52. Gerritse K, Noelle RJ, Aruffo A, Ledbetter JA, Laman JD, Boersma WJA, Ciaassen E: Functional and histological evidence for the involvement of gp39 (CD40 ligand) in multiple sclerosis. Proc Natl Acad Sci USA (in press), 1995

  53. Trinchieri G: Interleukin-12: A cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes. Blood 84: 4008–4027, 1994

    PubMed  Google Scholar 

  54. Leonard JP, Waldburger KE, Goldman SJ: Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med 181:381–386, 1995

    PubMed  Google Scholar 

  55. Lin RF, Lin TS, Tilton RG, Cross AH: Nitric oxide localized to spinal cords of mice with experimental allergic encephalomyelitis: An electron paramagnetic resonance study. J Exp Med 178:643–648, 1993

    PubMed  Google Scholar 

  56. Cross AH, Misko TP, Lin RF, Hickey WF, Trotter JL, Tilton RG: Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice. J Clin Invest 93:2684–2690, 1994

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buhlmann, J.E., Noelle, R.J. Therapeutic potential for blockade of the CD40 ligand, gp39. J Clin Immunol 16, 83–89 (1996). https://doi.org/10.1007/BF01540954

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01540954

Keywords

Navigation