Skip to main content
Log in

Long-range activation of transcription by SV40 enhancer is affected by “inhibitory” or “permissive” DNA sequences between enhancer and promoter

  • Published:
Somatic Cell and Molecular Genetics

Abstract

The transcriptional enhancer effect is used in many, if not all, organisms for remote control of gene transcription. An enhancer DNA can dramatically stimulate transcription of a linked gene from positions either 5′ or 3′ to the gene. Both the proximal promoter and the distal enhancer sequences are binding sites for transcription factors. Interaction between promoter and enhancer is mediated by these factors, presumably via looping out of the intervening DNA. Here we report that the extent of remote activation by an enhancer depends on characteristics of that intervening DNA. Using Beta-globin and SV40 T-antigen test genes, we show that the effect of an SV40 enhancer is transmitted to the responsive promoter, with little or no loss of efficiency, through certain segments of mammalian DNA derived from rabbit β-globin or mouse α-globin gene regions. By contrast, a strong reduction of enhancer activity is observed with certain spacer segments of prokaryotic DNA (from plasmid pBR322 or phage lambda) or sequences of high (G+C) content from eukaryotic genes. We have analyzed more closely sequences that are more or less permissive for transmission of the transcriptional enhancer effect. It appears that these permissive sequences generally have a high (A+T) content and notably a very low abundance of CpG dinucleotides. By contrast, (G+C)-rich DNA segments with high local densities of CpG were the most deleterious for long-range enhancer action. We note that the latter sequence composition is typical for “CpG islands” of many mammalian genes, including housekeeping genes and the human α-globin gene. This may be related to the finding that promoters of most cell type-specific genes, whose activity depends on a strong enhancer, do not contain CpG islands. Most likely, the spacer DNAs of typical cell type-specific genes have evolved to allow maximal transmission of the enhancer effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Banerji, J., Rusconi, S., and Schaffner, W. (1981).Cell 27:299–308.

    PubMed  Google Scholar 

  2. Moreau, P.R., Hen, R., Wasylyk, B., Everett, R., Gaub, M.P., and Chambon, P. (1981).Nucleic Acids Res. 9:6047–6068.

    PubMed  Google Scholar 

  3. Serfling, E., Jasin, M., and Schaffner, W. (1985).Trends Genet,1:224–230.

    Google Scholar 

  4. Maniatis, T., Goodbourn, S., and Fischer, J.A. (1987).Science 236:1237–1245.

    PubMed  Google Scholar 

  5. Müller, M.M., Gerster, T., and Schaffner, W. (1988).Eur. J. Biochem. 176:485–495.

    PubMed  Google Scholar 

  6. Wasylyk, B., Wasylyk, C., Augereau, P., and Chambon, P. (1983).Cell 32:503–514.

    PubMed  Google Scholar 

  7. de Villiers, J., Olson, L., Banerji, J., and Schaffner, W. (1983).Cold Spring Harbor Symp. Quant. Biol. 47:911–921.

    PubMed  Google Scholar 

  8. Kadesch, T.R., and Berg, P. (1986).J. Mol. Cell. Biol. 6:2593–2601.

    Google Scholar 

  9. Wasylyk, B., Wasylyk, C., and Chambon, P. (1984).Nucleic Acids Res. 12:5589–5608.

    PubMed  Google Scholar 

  10. Maniatis, T., Fritsch, E.F., and Sambrook, J. (eds.) (1982).Molecular Cloning, A Laboratory Manual, (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).

    Google Scholar 

  11. Tooze, J. (ed.) (1981).Molecular Biology of Tumor Viruses, 2nd ed.,Revised: DNA Tumor Viruses, (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).

    Google Scholar 

  12. Weber, F., de Villiers, J., and Schaffner, W. (1984).Cell 36:983–992.

    PubMed  Google Scholar 

  13. Gluzman, Y., Sambrook, J.F., and Frisque, R.J. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:3898–3902.

    PubMed  Google Scholar 

  14. Sutcliffe, J.G. (1978).Cold Spring Harbor Symp. Quant. Biol. 43:77–90.

    Google Scholar 

  15. Sergeant, A., Bohmann, D., Zentgraf, H., Weiher, H., and Keller, W. (1984).J. Mol. Biol. 180:577–600.

    PubMed  Google Scholar 

  16. Picard, D., and Schaffner, W. (1985).EMBO J. 4:2831–2838.

    PubMed  Google Scholar 

  17. Schirm, S., Jiricny, J., and Schaffner, W. (1987).Genes Dev. 1:65–74.

    PubMed  Google Scholar 

  18. Banerji, J., Olson, L., and Schaffner, W. (1983).Cell 33:729–740.

    PubMed  Google Scholar 

  19. Lusky, M., and Botchan, M. (1981).Nature 293:79–81.

    PubMed  Google Scholar 

  20. Dierks, P., van Ooyen, A., Cochran, M.D., Dobkin, C., Reiser, J., and Weissmann, C. (1983).Cell 32:695–706.

    PubMed  Google Scholar 

  21. Bird, A.P. (1986).Nature 321:209–213.

    PubMed  Google Scholar 

  22. Bird, A.P. (1987).Trends Genet. 3:342–347.

    Google Scholar 

  23. Nickol, J.M., and Felsenfeld, G. (1988).Proc. Natl. Acad. Sci. U.S.A. 85:2548–2552.

    PubMed  Google Scholar 

  24. Garabedian, M.J., Shepherd, B.M., and Wensink, P.C. (1986).Cell 45:859–867.

    PubMed  Google Scholar 

  25. Godbout, R., Ingram, R.S., and Tilghman, S.M. (1988).J. Mol. Cell. Biol. 8:1169–1178.

    Google Scholar 

  26. Gillies, S.D., Morrison, S.L., Oi, V.T., and Tonegawa, S. (1983).Cell 33:717–728.

    PubMed  Google Scholar 

  27. Neuberger, M.S. (1983).EMBO J. 2:1373–1378.

    PubMed  Google Scholar 

  28. Tuan, D.Y.H., Solomon, W.B., London, I.M., and Lee, D.P. (1989).Proc. Natl. Acad. Sci. U.S.A. 86:2554–2558.

    PubMed  Google Scholar 

  29. Pinkert, C.A., Ornitz, D.M., Brinster, R.L., and Palmiter, R.D. (1987).Genes Dev. 1:268–279.

    PubMed  Google Scholar 

  30. Hiromi, Y., and Gehring, W. (1987).Cell 50:963–974.

    PubMed  Google Scholar 

  31. Krimpenfort, P., de Jong, R., Uematsu, Y., Dembic, Z., Ryser, S., von Boehmer, H., Steinmetz, M., and Berns, A. (1988).EMBO J. 7:745–750.

    PubMed  Google Scholar 

  32. Winoto, A., and Baltimore, D. (1989).EMBO J. 8:729–733.

    PubMed  Google Scholar 

  33. Probst, E., Kressmann, A., and Birnstiel, M.L. (1979).J. Mol. Biol. 135:709–732.

    PubMed  Google Scholar 

  34. Yoder, J.I., and Ganesan, A.T. (1983).J. Mol. Cell. Biol. 3:956–959.

    Google Scholar 

  35. Townes, T.M., Chen, H.Y., Lingri, J.B., Palmiter, R.D., and Brinster, R.L. (1985).J. Mol. Cell. Biol. 5:1977–1983.

    Google Scholar 

  36. Courey, A.J., Plon, S.E., and Wang, J.C. (1986).Cell 45:567–574.

    PubMed  Google Scholar 

  37. Peterson, D.O., Beifuss, K.K., and Morley, K.L. (1987).J. Mol. Cell. Biol. 7:1563–1567.

    Google Scholar 

  38. Kuhl, D., de la Fuente, J., Chaturvedi, M., Parimoo, S., Ryals, J., Meyer, F., and Weissmann, C. (1987).Cell 50:1057–1069.

    PubMed  Google Scholar 

  39. Sigler, P. (1988).Nature 333:210–212.

    PubMed  Google Scholar 

  40. Hagerman, P.J. (1988).Annu. Rev. Biophys. Chem. 17:265–286.

    Google Scholar 

  41. Olson, W.K., Srinivasan, A.R., Maroun, R.C., Torres, R., and Clark, W. (1987). InUnusual DNA Structures, (eds.) Wells, R.D., and Harvey, S.C. (Springer-Verlag, Heidelberg), pp. 207–224.

    Google Scholar 

  42. Choi, O.R., and Engel, J.D. (1986).Nature 323:731–734.

    PubMed  Google Scholar 

  43. Emerson, B.M., Nickol, J.M., Jackson, P.D., and Felsenfeld, G. (1987).Proc. Natl. Acad. Sci. U.S.A. 84:4786–4790.

    PubMed  Google Scholar 

  44. Kretsovali, A., Müller, M.M. Weber, Marcaud, L., Farache, G., Schreiber, E., Schaffner, W., and Scherrer, K. (1987).Gene 58:167–175.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiber, E., Schaffner, W. Long-range activation of transcription by SV40 enhancer is affected by “inhibitory” or “permissive” DNA sequences between enhancer and promoter. Somat Cell Mol Genet 15, 591–603 (1989). https://doi.org/10.1007/BF01534920

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534920

Keywords

Navigation