Skip to main content
Log in

Bioenergetics of nerve excitation

  • Published:
Journal of bioenergetics Aims and scope Submit manuscript

Abstract

The process of action potential production is analyzed in relation to the problem of energy transduction in the nerve. Describing the conditions required for the maintenance of excitability, the indispensability of divalent cations and the dispensability of univalent cations in the external medium are emphasized. Univalent cations with a strong tendency toward hydration enhance the action potential amplitude when added to the external Ca-salt solution. Experimental facts are described in consonance with the macromolecular interpretation of nerve excitation which postulates a transition of the negatively charged membrane macromolecules from a hydrophobic (resting) state to a hydrophilic (excited) state. Thermodynamic implications are discussed in relation to changes in enthalpy and volume accompanied by action potential production. Difficulties associated with analyses of excitation processes on a molecular basis are stressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Hodgkin and B. Katz,J. Physiol.,108 (1949) 37.

    Google Scholar 

  2. E. Overton,Pflügers Arch. f. ges. Physiol.,92 (1902) 346.

    Google Scholar 

  3. R. Lorente de No, F. Vidal and L. M. H. Larramendi,Nature,179 (1957) 737.

    Google Scholar 

  4. B. Hille,Proc. Nat. Acad. Sci.,68 (1971) 280.

    PubMed  Google Scholar 

  5. I. Tasaki, I. Singer and A. Watanabe,Amer. J. Physiol.,211 (1966) 746.

    PubMed  Google Scholar 

  6. I. Tasaki,Nerve Excitation, A Macromolecular Approach, Charles C. Thomas, Springfield, Illinois, 1968.

    Google Scholar 

  7. I. Tasaki, A. Watanabe and L. Lerman,Amer. J. Physiol. 213 (1967) 1465.

    PubMed  Google Scholar 

  8. A. Watanabe, I. Tasaki and L. Lerman,Proc. Nat. Acad. Sci.,58 (1967) 2246.

    PubMed  Google Scholar 

  9. I. Tasaki, L. Lerman and A. Watanabe,Amer. J. Physiol.,216 (1969) 130.

    PubMed  Google Scholar 

  10. I. Tasaki, I. Singer and T. Takenaka,J. Gen. Physiol.,48 (1965) 1095.

    PubMed  Google Scholar 

  11. K. S. Cole and H. J. Curtis,J. Gen. Physiol.,22 (1939) 649.

    Google Scholar 

  12. R. D. Keynes,J. Physiol.,114 (1951) 119.

    PubMed  Google Scholar 

  13. A. L. Hodgkin and R. D. Keynes,J. Physiol.,119 (1953) 513.

    PubMed  Google Scholar 

  14. O. Kedem and A. Essig,J. Gen. Physiol.,48 (1965) 1047.

    PubMed  Google Scholar 

  15. I. Tasaki, I. Singer, and A. Watanabe,J. Gen. Physiol.,50 (1967) 988.

    Google Scholar 

  16. A. L. Hodgkin and R. D. Keynes,J. Physiol.,138 (1957) 253.

    PubMed  Google Scholar 

  17. T. Teorell,Progr. Biophys.,3 (1953) 305.

    Google Scholar 

  18. K. Sollner,J. Macromol. Sci. Chem.,A3 (1969) 1.

    Google Scholar 

  19. J. A. Kitchner, in:Modern Aspects of Electrochemistry, J. O. Brockris (ed.), Vol. II, Academic Press, New York, 1959, p. 87.

    Google Scholar 

  20. L. Mullins,J. Gen. Physiol.,43 (1960) 105.

    PubMed  Google Scholar 

  21. P. F. Baker,Sci. Amer.,214 (1966) 74.

    PubMed  Google Scholar 

  22. A. L. Hodgkin and A. F. Huxley,J. Physiol.,117 (1952) 500.

    PubMed  Google Scholar 

  23. F. Helfferich,Ion Exchange, McGraw-Hill, New York, 1962.

    Google Scholar 

  24. A. Ikegami and N. Imai,J. Polymer Sci.,56 (1962) 133.

    Google Scholar 

  25. O. Smidsrod and A. Haug,J. Polymer Sci. C,16 (1967) 1587.

    Google Scholar 

  26. E. Matijevic, J. Leja and R. Nemeth,J. Colloid and Interface Sci.,22 (1966) 419.

    Google Scholar 

  27. R. M. Barrer and J. D. Falconer,Proc. Roy. Soc. A,236 (1956) 227.

    Google Scholar 

  28. D. H. Olson and H. S. Sherry,J. Phys. Chem.,72, (1968) 4095.

    Google Scholar 

  29. I. Tasaki, A. Watanabe and M. Hallett,Proc. Nat. Acad. Sci.,68 (1971) 938.

    PubMed  Google Scholar 

  30. I. Tasaki, T. Takenaka and S. Yamagishi,Amer. J. Physiol. 215 (1968) 152.

    PubMed  Google Scholar 

  31. W. J. V. Osterhout and S. E. Hill,J. Gen. Physiol.,22 (1938) 139.

    Google Scholar 

  32. F. T. Wall and J. W. Drenan,J. Polymer Sci.,7 (1951) 83.

    Google Scholar 

  33. N. T. Coleman,Soil Sci.,74 (1952) 115.

    Google Scholar 

  34. R. M. Barrer, L. V. C. Rees and D. J. Ward,Proc. Roy. Soc. A,273 (1963) 180.

    Google Scholar 

  35. H. S. Sherry and H. F. Walton,J. Phys. Chem.,71 (1967) 1457.

    Google Scholar 

  36. B. C. Abbott, A. V. Hill and J. V. Howarth,Proc. Roy. Soc. B,148 (1958) 149.

    Google Scholar 

  37. J. V. Howarth, R. D. Keynes and J. M. Richie,J. Physiol.,194 (1968) 745.

    PubMed  Google Scholar 

  38. J. W. Moore, T. Narahashi and T. I. Shaw,J. Physiol.,188 (1967) 99.

    PubMed  Google Scholar 

  39. C. S. Spyropoulos,Amer. J. Physiol.,200 (1961) 2064.

    Google Scholar 

  40. F. Oosawa,Polyelectrolytes Marcel Dekker, Inc., New York, 1971.

    Google Scholar 

  41. C. S. Spyropoulos,J. Gen. Physiol.,40 (1957) 849.

    PubMed  Google Scholar 

  42. C. S. Spyropoulos and E. M. Ezzy,Amer. J. Physiol.,197 (1959) 808.

    Google Scholar 

  43. F. Conti and G. Palmieri,Biophysik,5 (1968) 71.

    PubMed  Google Scholar 

  44. E. A. GuggenheimThermodynamics, 3rd Ed., Interscience, New York, 1957.

    Google Scholar 

  45. A. Essig,Biophys. J.,8 (1968) 53.

    PubMed  Google Scholar 

  46. P. F. Baker, M. P. Blaustein, A. L. Hodgkin and R. A. Steinhardt,J. Physiol.,200 (1969) 431.

    PubMed  Google Scholar 

  47. P. C. Caldwell,J. Physiol.,152 (1960) 545.

    PubMed  Google Scholar 

  48. F. J. Brinley and L. J. Mullins,J. Gen. Physiol.,52 (1968) 181.

    PubMed  Google Scholar 

  49. S. I. Rapoport,Biophys. J.,11 (1971) 631.

    PubMed  Google Scholar 

  50. M. P. Blaustein and A. L. Hodgkin,J. Physiol.,200 (1969) 497.

    PubMed  Google Scholar 

  51. C. M. Connelly,Biol. Bull.,103 (1952) 315.

    Google Scholar 

  52. M. G. Doane,J. Gen. Physiol.,50 (1967) 2603.

    PubMed  Google Scholar 

  53. P. F. Baker,J. Physiol.,180 (1965) 383.

    PubMed  Google Scholar 

  54. J. M. Richie,J. Physiol.,188 (1967) 309.

    PubMed  Google Scholar 

  55. M. G. Larrabee,Progr. in Brain Res.,31 (1969) 95.

    Google Scholar 

  56. E. Giacobini,Protoplasma,63 (1967) 52.

    PubMed  Google Scholar 

  57. L. A. Cuervo and W. J. Adelman,J. Gen. Physiol.,55 (1970) 309.

    PubMed  Google Scholar 

  58. H. N. Fishman,Biophys. J.,10 (1970) 799.

    PubMed  Google Scholar 

  59. L. B. Cohen and R. D. Keynes,J. Physiol. 212 (1971) 259.

    PubMed  Google Scholar 

  60. L. B. Cohen, B. Hille and R. D. Keynes,J. Physiol.,211 (1970) 495.

    PubMed  Google Scholar 

  61. P. Mueller and D. O. Rudin,J. Theor. Biol.,18 (1968) 222.

    PubMed  Google Scholar 

  62. G. Ehrenstein, H. Lecar and R. Nossal,J. Gen. Physiol. 55 (1970) 119.

    PubMed  Google Scholar 

  63. D. E. Goldman,Biophys. J.,4 (1964) 167.

    Google Scholar 

  64. L. Bass and W. J. Moore, in:Structural Chemistry and Molecular Biology, A. Rich and N. Davidson (eds.), W. H. Freeman and Co., San Francisco, 1968, p. 356.

    Google Scholar 

  65. G. Adam,Z. Naturforsch.,23b (1968) 181.

    Google Scholar 

  66. J. H. Wang,Proc. Nat. Acad. Sci.,67 (1970) 916.

    PubMed  Google Scholar 

  67. L. Y. Wei,Math. Biophys.,33 (1971) 187.

    Google Scholar 

  68. T. L. Hill and Y.-D. Chen,Proc. Nat. Acad. Sci.,68 (1971) 1711.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tasaki, I., Hallett, M. Bioenergetics of nerve excitation. J Bioenerg Biomembr 3, 65–79 (1972). https://doi.org/10.1007/BF01515998

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01515998

Keywords

Navigation