Skip to main content
Log in

Genetic control of development inXenopus laevis

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

In this paper we address the question of how genes can control development by usingXenopus as a model system, since it combines the classical advantages of amphibian embryology with advanced molecular techniques. Several developmental regulator genes have been shown to encode for transcription factors which trigger the activation of downstream genes, thus resulting in a cascade of regulatory events. In the first two examples, we deal with regulatory events that underlie early body patterning in vertebrates, and with the role of homeobox transcription factors in deciphering positional information along the body axis. In the third example, we address the question of the role of post-transcriptional regulation in development by studying the possible regulatory role of a cytoplasmic zinc finger protein, presumably acting through RNA-protein interactions. The general idea is that understanding how genes can control development will hopefully lead to understanding the construction of a shape, and eventually of an organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreazzoli, M., S. De Lucchini, M. Costa & G. Barsacchi, 1993. RNA binding properties and evolutionary conservation of theXenopus multifinger protein Xfin. Nucl. Acids Res. 21: 4218–4225.

    PubMed  Google Scholar 

  • Baumhueter, S., D.B. Mendel, P.B. Conley, C.J. Kuo, C. Turk, M.K. Graves, C.A. Edwards, G. Courtois & G.R. Crabtree, 1990. HNF1 shares three sequence motifs with the POU domain proteins and is identical to LF-B1 and APF. Genes Dev. 4: 372–379.

    PubMed  Google Scholar 

  • Boncinelli, E., M. Gulisano & V. Broccoli, 1993. Emx and Otx homeobox genes in the developing mouse brain. J. Neurobiol. 24: 1356–1366.

    PubMed  Google Scholar 

  • Carrasco, A.E., W. McGinnis, W.J. Gehring & E.M. De Robertis, 1984. Cloning of aX. laevis gene expressed during early embryogenesis coding for a peptide region homologous toDrosophila homeotic genes. Cell 37: 409–414.

    PubMed  Google Scholar 

  • Cho, K.W.Y., B. Blumberg, J. Steinbeisser & E.M. De Robertis, 1991. Molecular nature of Spemann's organizer: the role of theXenopus homeobox gene goosecoid. Cell 67: 1111–1120.

    PubMed  Google Scholar 

  • Cunliffe, V. & J.C. Smith, 1994. Specification of mesodermal pattern inXenopus laevis by interactions between Brachyury, noggin and Xwnt-8. EMBO J. 13: 349–359.

    PubMed  Google Scholar 

  • Dalton, D., R. Chadwick & W. McGinnis, 1989. Expression and embryonic function of empty spiracles: ADrosophila homeobox gene with two patterning functions on the anterior-posterior axis of the embryo. Genes Dev. 3: 1940–1956.

    PubMed  Google Scholar 

  • Dekker, E.-J., M. Pannese, E. Houtzager, A. Timmermans, E. Boncinelli & A. Durston, 1992.Xenopus Hox-2 genes are expressed sequentially after the onset of gastrulation and are differentially inducible by retinoic acid, Development 1992 Suppl., 195–202.

    Google Scholar 

  • De Lucchini, S., F.M. Rijli, G. Ciliberto & G. Barsacchi, 1991. AXenopus multifinger protein, Xfin, is expressed in specialized cell types and is localized in the cytoplasm. Mech. Dev. 36: 31–40.

    PubMed  Google Scholar 

  • Demartis, A., M. Maffei, R. Vignali, G. Barsacchi & V. De Simone, 1994. Cloning and developmental expression of LFB3/HNF1-β transcription factor inX. laevis. Mech. Dev. 47: 19–28.

    PubMed  Google Scholar 

  • De Simone, V., L. De Magistris, D. Lazzaro, J. Gerstner, P. Monaci, A. Nicosia & R. Cortese, 1991. LFB3, a heterodimer-forming homeoprotein of the LFB1 family, is expressed in specialized epithelia. EMBO J. 10: 1435–1443.

    PubMed  Google Scholar 

  • Dirksen, M.L. & M. Jamrich, 1992. A novel, activin-inducible, blastopore lip-specific gene ofXenopus laevis contains a fork head DNA-binding domain. Genes Dev. 6: 599–608.

    PubMed  Google Scholar 

  • El-Baradi, T. & T. Pieler, 1991. Zinc finger proteins: what we know and what we would like to know. Mech. Dev. 35: 155–169.

    PubMed  Google Scholar 

  • El-Baradi, T., T. Bouwmeester, R. Giltay & T. Pieler, 1991. The maternal store of zinc finger protein encoding mRNAs in fully grownXenopus oocytes is not required for early embryogenesis. EMBO J. 10: 1407–1413.

    PubMed  Google Scholar 

  • Finkelstein, R., D. Smouse, T.M. Capaci, A.C. Spradling & N. Perrimon, 1990. The orthodenticle gene encodes a novel homeo domain protein involved in the development of the nervous system and ocellar visual structures. Genes Dev. 4: 1516–1527.

    PubMed  Google Scholar 

  • Finkelstein, R. & N. Perrimon, 1992. The molecular genetics of head development inDrosophila melanogaster. Development 112: 899–912.

    Google Scholar 

  • Frain, M., G. Swart, P. Monaci, A. Nicosia, S. Stampfli, R. Frank & R. Cortese, 1989. The liver specific transcription factor LF-B1 contains a highly diverged homeobox DNA binding domain. Cell 59: 145–157.

    PubMed  Google Scholar 

  • Gendron-Maguire, M., M. Mallo, M. Zhang & T. Gridley, 1993. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 75: 1317–1331.

    PubMed  Google Scholar 

  • Gilbert, S.F. & L. Saxen, 1993. Spemann's organizer: models and molecules. Mech. Dev. 41: 73–89.

    PubMed  Google Scholar 

  • Guddat, U., A.H. Bakken & T. Pieler, 1990. Protein-mediated nuclear export of RNA: 5S rRNA containing small RNPs inXenopus oocytes. Cell 60: 619–628.

    PubMed  Google Scholar 

  • Honda, B.M. & R.G. Roeder, 1980. Association of a 5S gene transcription factor with 5S RNA and altered levels of the factor during cell differentiation. Cell 22: 119–126.

    PubMed  Google Scholar 

  • Hunt, P. & R. Krumlauf, 1992. Hox codes and positional specification in vertebrate embryonic axes. Annu. Rev. Cell Biol. 8: 227–256.

    PubMed  Google Scholar 

  • Jackson, R.J., 1993. Cytoplasmic regulation of mRNA function: the importance of the 3′ untranslated region. Cell 74: 9–14.

    PubMed  Google Scholar 

  • Jacobs, G.H., 1992. Determination of the base recognition positions of zinc fingers from sequence analysis. EMBO J. 11: 4507–4517.

    PubMed  Google Scholar 

  • Joho, K.E., M.K. Darby, E.T. Crawford & D.D. Brown, 1990. A finger protein structurally similar to TFIIIA that binds exclusively to 5S RNA inXenopus. Cell 61: 293–300.

    PubMed  Google Scholar 

  • Jurgens, G., E. Wieschaus, C. Nusslein-Volhard & H. Kluding, 1984. Mutations affecting the pattern of the larval cuticle inDrosophila melanogaster. II. Zygotic loci on the third chromosome. Wilhelm Roux's Arch. Dev. Biol. 193: 283–295.

    Google Scholar 

  • Kessel, M. & P. Gruss, 1991. Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67: 89–104.

    PubMed  Google Scholar 

  • Kimelman, D., J.L. Christian & R.T. Moon, 1992. Sinergistic principles of development: overlapping patterning system inXenopus mesoderm induction. Development 116: 1–9.

    PubMed  Google Scholar 

  • Knöchel, W., A. Pöting, M. Köster, T. El-Baradi, T. Bouwmeester & T. Pieler, 1989. Evolutionary conserved modules associated with zinc fingers inXenopus laevis. Proc. Natl. Acad. Sci. USA 86: 6097–6100.

    PubMed  Google Scholar 

  • Köster, M., U. Kühn, T. Bouwmeester, W. Nietfeld, T. El-Baradi, W. Knöchel & T. Pieler, 1991. Structure, expression and in vitro functional characterization of a novel RNA binding zinc finger protein fromXenopus. EMBO J. 10: 3087–3093.

    PubMed  Google Scholar 

  • Köster, M., T. Pieler & W. Knöckel, 1988. The finger motif defines a multigene family represented in the maternal mRNA ofXenopus laevis oocytes. EMBO J. 7: 1735–1741.

    PubMed  Google Scholar 

  • Ku, M. & D.A. Melton, 1993. Xwnt-11: a maternally expressedXenopus wnt gene. Development 119: 1161–1173.

    PubMed  Google Scholar 

  • Kuo, C.J., P.B. Conley, C.-L. Hsieh, U. Francke & G.R. Crabtree, 1990. Molecular cloning, functional expression, and chromosomal localization of mouse hepatocyte nuclear factor 1. Proc. Natl. Acad. Sci. USA 87: 9838–9842.

    PubMed  Google Scholar 

  • Lamb, T.M., A.K. Knecht, W.C. Smith, S.E. Stachel, A.N. Economides, N. Stahl, G.D. Yancopolous & R.M. Harland, 1993. Neural induction by the secreted polypeptide noggin. Science 262: 713–718.

    PubMed  Google Scholar 

  • Lazzaro, D., V. De Simone, L. De Magistris, E. Lehtonen & R. Cortese, 1992. LFB1 and LFB3 homeoproteins are sequentially expressed during kidney development. Development 114: 469–479.

    PubMed  Google Scholar 

  • Mangold, O., 1933. Uber die Induktionsfahigkeit des verschiedenen Bezirke der Neurula von Urodelen. Naturwissenschaften 21: 761–766.

    Google Scholar 

  • Massagué, J., 1987. The TGF-β family of growth and differentiation factors. Cell 49: 437–438.

    PubMed  Google Scholar 

  • McGinnis, W. & R. Krumlauf, 1992. Homeobox genes and axial patterning. Cell 68: 283–302.

    PubMed  Google Scholar 

  • Mendel, D.B., L.P. Hansen, M.K. Graves, P.B. Conley & G.R. Crabtree, 1991. HNF-1α and HNF-1β/vHNF-1 share dimerization and homeo domains, but not activation domains, and form heterodimers in vivo. Genes Dev. 5: 1042–1056.

    PubMed  Google Scholar 

  • Miller, J., A.D. McLachlan & A. Klug, 1985. Repetitive zinc-binding domains in the protein transcription factor IIIA fromXenopus oocytes. EMBO J. 4: 1609–1614.

    PubMed  Google Scholar 

  • Nicosia, A., P. Monaci, L. Tomei, R. De Francesco, M. Nuzzo, H. Stunnenberg & R. Cortese, 1990. A myosin-like dimerization helix and an extra-large homeodomain are essential elements of the tripartite DNA binding structure of LFB1. Cell 61: 1225–1236.

    PubMed  Google Scholar 

  • Niehrs, C.H., R. Keller, K.W.Y. Cho & E.M. De Robertis, 1993. The homeobox gene goosecoid controls cell migration inXenopus embryos. Cell 72: 491–503.

    PubMed  Google Scholar 

  • Niehrs, C., H. Steinbeisser & E.M. De Robertis, 1994. Mesodermal patterning by a gradient of the, vertebrate homeobox gene goosecoid. Science 263: 817–820.

    PubMed  Google Scholar 

  • Nieuwkoop, P.D. & J. Faber, 1967. Normal table ofXenopus laevis Daudin. 2nd edn., North Holland Publishing Company, Amsterdam.

    Google Scholar 

  • Otte, A.P., I.M. Kramer, M. Mannesse, C. Lambrechts & A.J. Durston, 1990. Characterization of protein kinase C in earlyXenopus embryogenesis. Development 110: 461–470.

    PubMed  Google Scholar 

  • Pavletich, N.P. & C.O. Pabo, 1991. Zinc-finger DNA recognition: crystal structure of ZifB268-DNA complex at 2.1°A. Science 252: 809–817.

    PubMed  Google Scholar 

  • Pelham, H.R.B. & D.D. Brown, 1980. A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. Proc. Natl. Acad. Sci. USA 77: 4170–4174.

    PubMed  Google Scholar 

  • Picard, B., M. le Maire, M. Wegnez & H. Denis, 1980. Biochemical research on oogenesis. Composition of the 42S storage particle ofXenopus laevis oocytes. Eur. J. Biochem. 109: 665–669.

    Google Scholar 

  • Picard, B. & M. Wegnez, 1979. Isolation of a 7S particle fromXenopus laevis oocytes: a 5S RNA-protein complex. Proc. Natl. Acad. Sci. USA 76: 241–245.

    PubMed  Google Scholar 

  • Poole, T.J. & M.S. Steinberg, 1984. Different modes of pronephric duct origin among vertebrates. Scanning Electron Microscopy 1: 475–482.

    Google Scholar 

  • Rastinejad, F. & H.M. Blau, 1993. Genetic complementation reveals a novel regulatory role for 3′ untranslated region in growth and differentiation. Cell 72: 903–917.

    PubMed  Google Scholar 

  • Rey-Campos, J., T. Chouard, M. Yaniv & S. Cereghini, 1991. vHNF1 is a homeoprotein that activates transcription and forms heterodimers with HNF1. EMBO J. 10: 1445–1457.

    PubMed  Google Scholar 

  • Rijli, F.M., S. De Lucchini, G. Ciliberto & G. Barsacchi, 1993a. A Zn-finger protein, Xfin, is expressed during cone differentiation in the retina of the frog,Xenopus laevis. Int. J. Dev. Biol. 37: 311–317.

    PubMed  Google Scholar 

  • Rijli, F.M., M. Mark, S. Lakkaraju, A. Dierich, P. Dollé & P. Chambon, 1993b. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 75: 1333–1349.

    PubMed  Google Scholar 

  • Rosenberg, U.B., C. Schröder, A. Preiss, A. Kienlin, S. Côté, I. Riede & H. Jäckle, 1986. Structural homology of the product of theDrosophila Krüppel gene with theXenopus transcription factor IIIA. Nature 319: 336–339.

    Google Scholar 

  • Ruiz i Altaba, A., H. Perry-O'Keefe & D.A. Melton, 1987. Xfin, an embryonic gene encoding a multifingered protein inXenopus. EMBO J. 6: 3065–3070.

    PubMed  Google Scholar 

  • Ruiz i Altaba, A. & T.M. Jessell, 1992. Pintallavis, a gene expressed in the organizer and midline cells of frog embryos: involvement in the development of the neural axis. Development 116: 81–93.

    PubMed  Google Scholar 

  • Ruiz i Altaba, A., C. Cox, T.M. Jessell & A. Klar, 1993. Ectopic neural expression of a floor plate marker in frog embryos injected with the midline transcription factor Pintallavis. Proc. Natl. Acad. Sci. USA 90: 8268–8272.

    PubMed  Google Scholar 

  • Scharf, S.R. & J.C. Gerhart, 1980. Determination of the dorsalventral axis ofXenopus laevis: complete rescue of UV-impaired eggs by oblique orientation before first cleavage. Dev. Biol. 79: 181–198.

    PubMed  Google Scholar 

  • Schneider-Maunoury, S., P. Topilko, T. Seitanidou, G. Levi, M. Cohen-Tannoudji, S. Pournin, C. Babinet & P. Charnay, 1993. Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 75: 1199–1214.

    PubMed  Google Scholar 

  • Simeone, A., D. Acampora, L. Arcioni, P.W. Andrews, E. Boncinelli & F. Mavilio, 1990. Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature 346: 763–766.

    PubMed  Google Scholar 

  • Simeone, A., D. Acampora, M. Gulisano, A. Stornaiuolo & E. Boncinelli, 1992. Nested expression domains of four homeobox genes in the developing rostral brain. Nature 358: 687–690.

    PubMed  Google Scholar 

  • Singer, R.H., 1993. RNA zipcodes for cytoplasmic addresses. Curr. Biol. 3: 719–721.

    PubMed  Google Scholar 

  • Sive, H.L. & P.F. Cheng, 1991. Retinoic acid perturbs the expression of Xhoxlab genes and alters mesodermal determination inXenopus laevis. Genes Dev. 5: 1321–1332.

    PubMed  Google Scholar 

  • Sive, H.L., B.W. Draper, R.M. Harland & H. Weintraub, 1990. Identification of a retinoic-acid sensitive period during primary axis formation inXenopus laevis. Genes Dev. 4: 932–942.

    PubMed  Google Scholar 

  • Smith, J.C., 1993. Mesoderm-inducing factors in early vertebrate development. EMBO J. 12: 4463–4470.

    PubMed  Google Scholar 

  • Smith, W.C. & R.M. Harland, 1992. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer inXenopus embryos. Cell 70: 829–840.

    PubMed  Google Scholar 

  • Smith, W.C., A.K. Knecht, M. Wu & R.M. Harland, 1993. Secreted noggin protein mimics the Spemann organizer in dorsalizingXenopus mesoderm. Nature 361: 547–549.

    PubMed  Google Scholar 

  • Spemann, H., 1938. Embryonic development and induction. New Haven, CT, Yale University Press.

    Google Scholar 

  • St. Johnson, D. & C. Nüsslein-Volhard, 1992. The origin of pattern and polarity in theDrosophila embryo. Cell 68: 201–219.

    PubMed  Google Scholar 

  • Steinbeisser, H., E.M. De Robertis, M. Ku, D.S. Kessler & D.A. Melton, 1993.Xenopus axis formation: induction of goosecoid by injected Xwnt-8 and activin mRNAs. Development 118: 499–507.

    PubMed  Google Scholar 

  • Taira, M., M. Jamrich, P.J. Good & I.B. Dawid, 1992. The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region ofXenopus gastrula embryos. Genes Dev. 6: 356–366.

    PubMed  Google Scholar 

  • Thomsen, G.H. & D.A. Melton, 1993. Processed Vg1 protein is an axial mesoderm inducer inXenopus. Cell 74: 433–441.

    PubMed  Google Scholar 

  • van Wijk, I., J. Burfeind & T. Pieler, 1992. Nuclear transport and phosphorylation of the RNA bindingXenopus zinc-finger protein XFG 5-1. Mech. Dev. 39: 63–72.

    PubMed  Google Scholar 

  • Vignali, R., M. Pannese, B. Kablar, G. Barsacchi & E. Boncinelli, 1993. Developmental expression ofXenopus homeobox genes related toDrosophila orthodenticle and empty spiracles genes. International Society of Developmental Biologists, 12th International Congress, p. 31.

  • von Dassow, G., J.E. Schmidt & D. Kimelman, 1993. Induction of theXenopus organizer: expression and regulation of Xnot, a novel FGF and activin-regulated homeo box gene. Genes Dev., 7: 355–366.

    PubMed  Google Scholar 

  • Walldorf, U. & W.J. Gehring, 1992. Empty spiracles, a gap gene containing a homeobox involved in head development. EMBO J. 11: 2247–2259.

    PubMed  Google Scholar 

  • Weeks, D.A. & D.L. Melton, 1987. A maternal mRNA localized to the vegetal hemisphere inXenopus eggs codes for a growth factor related to TGF-β. Cell 51: 861–867.

    PubMed  Google Scholar 

  • Wharton, R.P. & G. Struhl, 1991. DNA regulatory elements mediate control ofDrosophila body pattern by the posterior morphogen nanos. Cell 67: 955–967.

    PubMed  Google Scholar 

  • Wieschaus, E., C. Nusslein-Volhard & G. Jurgens, 1984. Mutations affecting the pattern of the larval cuticle inDrosophila melanogaster. III. Zygotic loci on the X-chromosome and 4th chromosome. Wilhelm Roux's Arch. Dev. Biol. 193: 296–307.

    Google Scholar 

  • Wilhelm, J. & R.D. Vale, 1993. RNA on the move: the mRNA localization pathway. J. Cell Biol. 123: 269–274.

    PubMed  Google Scholar 

  • Wormington, M., 1993. Poly A and translation: development control. Curr. Opinion Cell Biol. 5: 950–954.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vignali, R., De Lucchini, S., Kablar, B. et al. Genetic control of development inXenopus laevis . Genetica 94, 235–248 (1994). https://doi.org/10.1007/BF01443437

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01443437

Key words

Navigation