Skip to main content
Log in

Role of filter-feeding in the nutritional biology of a deep-sea mussel with methanotrophic symbionts

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The ability of an undescribed deep-sea hydrocarbon-seep mussel which contains endosymbiotic methanotrophic bacteria to clear, ingest, and assimilate radiolabeled bacteria (Vibrio pelagicus andEscherichia coli) and algae (Dunaliella tertiolecta) was compared with that of the bay musselMytilus edulis. The seep mussel, collected in August 1987 from the Louisana Slope in the Gulf of Mexico, was slower to clear bacteria and algae thanM. edulis. The ingestion and assimilation of filtered bacteria and algae was established from the presence of radiolabel in mussel tissues and feces. The seep mussel was somewhat less efficient in assimilating radiolabeled components from bacteria and algae thanM. edulis. The dietary carbon maintenance-requirement of the seep mussel could potentially be met at environmental concentrations of greater than 106 bacteria ml−1. At lower concentrations of particulate organic matter, filter-feeding could be an important source of nitrogen and essential nutrients not supplied by the endosymbionts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Anderson, A. E., Childress, J. J., Favuzzi, J. A. (1987). Net uptake of CO2 driven by sulphide and thiosulfate oxidation in the bacterial symbiont-containing clamSolemya reidi. J. exp. Biol. 133: 1–31

    Google Scholar 

  • Baumann, P., Baumann, L., Mandel, M. (1971). Taxonomy of marine bacteria: the genusBeneckea. J. Bact. 107: 268–294

    Google Scholar 

  • Bayne, B. L. (1973). Physiological changes inMytilus edulis L. induced by temperature and nutritive stress. J. mar. biol. Ass. U.K. 53: 39–58

    Google Scholar 

  • Bayne, B. L., Scullard, C. (1977). Rates of nitrogen excretion by species ofMytilus (Bivalvia: Mollusca). J. mar. biol. Ass. U.K. 57: 355–369

    Google Scholar 

  • Bayne, B. L., Thompson, R. J., Widdows, J. (1976). Physiology. I. In: Bayne, B. L. (ed.) Marine mussels: their ecology and physiology. Cambridge University Press, New York, p. 121–206

    Google Scholar 

  • Birkbeck, T. H., McHenery, J. G. (1982). Degradation of bacteria byMytilus edulis. Mar. Biol. 72: 7–15

    Google Scholar 

  • Brooks, J. M., Kennicutt, M. C. II, Fisher, C. R., Macko, S. A., Cole, K., Childress, J. J., Bidigare, R. R., Vetter, R. D. (1987). Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon sources. Science, N.Y. 238: 1138–1142

    Google Scholar 

  • Cary, S. C., Fisher, C. R., Felbeck, H. (1988). Mussel growth supported by methane as sole carbon and energy source. Science, N.Y. 240: 78–80

    Google Scholar 

  • Cavanaugh, C. M. (1985). Symbioses of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Bull. biol. Soc. Wash. 1985(6): 373–388

    Google Scholar 

  • Childress, J. J., Fisher, C. R., Brooks, J. M., Kennicutt, M. C. II, Bidigare, R., Anderson, A. E. (1986). A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas. Science, N.Y. 233: 1306–1308

    Google Scholar 

  • Coughlan, J. (1969). The estimation of filtering rate from the clearance of suspensions. Mar. Biol. 2: 356–358

    Google Scholar 

  • Davies, P. S. (1984). The role of zooxanthellae in the nutritional energy requirements ofPocillopora eydouxi. Coral Reefs 2: 181–186

    Google Scholar 

  • Dral, A. D. G. (1967). The movements of the latero-frontal cilia and the mechanism of particle retention in the mussel (Mytilus edulis L.). Neth. J. Sea Res. 3: 391–422

    Google Scholar 

  • Falkowski, P. G., Dubinsky, Z., Muscatine, L., Porter, J. W. (1984). Light and the bioenergetics of a symbiotic coral. BioSci. 34: 265–269

    Google Scholar 

  • Fiala-Médioni, A., Métivier, C., Herry, A., Le Pennec, M. (1986). Ultrastructure of the gill of the hydrothermal-vent mytilidBathymodiolus sp. Mar. Biol. 92: 65–72

    Google Scholar 

  • Fisher, C. R. (1990). Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev. aquat. Biol. (CRC Press) In press

  • Fisher, C. R., Childress, J. J. (1986). Translocation of fixed carbon from symbiotic bacteria to host tissues in the gutless bivalveSolemya reidi. Mar. Biol. 93: 59–68

    Google Scholar 

  • Fisher, C. R., Childress, J. J., Oremland, R. S., Bidigare, R. R. (1987). The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels. Mar. Biol. 96: 59–71

    Google Scholar 

  • Foster-Smith, R. L. (1975). The effect of concentration of suspension on the filtration rates and pseudofaecal production forMytilus edulis L.,Cerastoderma edule (L.), andVenerupis pullastra (Montagu). J. exp. mar. Biol. Ecol. 17: 1–22

    Google Scholar 

  • Jones, M. L. (1981).Riftia pachyptila Jones: observations on the vestimentiferan worm from the Galapagos Rift. Science, N.Y. 213: 333–336

    Google Scholar 

  • Jørgensen, C. B. (1975). On gill function in the mussel,Mytilus edulis L. Ophelia 13: 187–232

    Google Scholar 

  • Kennicutt, M. C. II, Brooks, J. M., Bidigare, R. R., Fay, R. R., Wade, T. L., McDonald, T. J. (1985). Vent-type taxa in a hydrocarbon seep region on the Louisana slope. Nature, Lond. 317: 351–353

    Google Scholar 

  • Le Pennec, M., Hily, A. (1984). Anatomie, structure et ultrastructure de la branchie u'un Mytilidae des sites hydrothermaux du Pacifique oriental. Oceanol. Acta 7: 517–523

    Google Scholar 

  • Le Pennec, M., Prieur, D. (1984). Observations sur la nutrition d'un mytilidae d'un site hydrothermal actif de la dorsale du Pacifique oriental. C.r. hebd. Séanc. Acad. Sci., Paris 298: 493–498

    Google Scholar 

  • Livingstone, D. R., Widdows, J., Fieth, P. (1979). Aspects of nitrogen metabolism of the common musselMytilus edulis: adaptation to abrupt and fluctuating changes in salinity. Mar. Biol. 53: 41–55

    Google Scholar 

  • Lucas, M. I., Newell, R. C., Shumway, S. E., Seiderer, L. J., Bally, R. (1987). Particle clearance and yield in relation to bacterioplankton and suspended particulate availability in estuarine and open coast populations of the musselMytilus edulis. Mar. Ecol. Prog. Ser. 36: 215–224

    Google Scholar 

  • Maniatis, T., Fritsch, E. F., Sambrook, J. (1982). Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • McHenery, J. G., Birkbeck, T. H. (1985). Uptake and processing of cultured microorganisms by bivalves. J. exp. mar. Biol. Ecol. 90: 145–163

    Google Scholar 

  • McLaughlin, J. J. A., Zahl, P. A. (1966). Endozoic algae. In: Henry, S. M. (ed.) Symbiosis. Academic Press, New York, p. 257–297

    Google Scholar 

  • Møhlenberg, F., Riisgård, H. U. (1978). Efficiency of particle retention in thirteen species of suspension feeding bivalves. Ophelia 17: 239–246

    Google Scholar 

  • Møhlenberg, F., Riisgård, H. U. (1979). Filtration rate, using a new indirect technique, in thirteen species of suspension-feeding bivalves. Mar. Biol. 54: 143–147

    Google Scholar 

  • Morton, B. (1983). Feeding and digestion in Bivalvia. In: Wilbur, K. M. (ed.) The Mollusca. Vol. 5. Pt. 2. Academic Press, New York, p. 65–147

    Google Scholar 

  • Reid, R. G. B. (1968). The distribution of digestive tract enzymes in lamellibranchiate bivalves. Comp. Biochem. Physiol. 24: 417–433

    Google Scholar 

  • Reid, R. G. B., Brand, D. G. (1986). Sulfide-oxidizing symbiosis in lucinaceans: implications for bivalve evolution. Veliger 29: 3–24

    Google Scholar 

  • Riisgård, H. U., Randløv, A. (1981). Energy budgets, growth and filtration rates inMytilus edulis at different algal concentrations. Mar. Biol. 61: 227–234

    Google Scholar 

  • Schweimanns, M., Felbeck, H. (1985). Significance of the occurrence of chemoautotrophic bacterial endosymbionts in lucinid clams from Bermuda. Mar. Ecol. Prog. Ser. 24: 113–120

    Google Scholar 

  • Seiderer, L. J., Newell, R. C. (1985). Relative significance of phytoplankton, bacteria and plant detritus as carbon and nitrogen resources for the kelp bed filter-feederChoromytilus meridionalis. Mar. Ecol. Prog. Ser. 22: 127–139

    Google Scholar 

  • Southward, E. C. (1982). Bacterial symbionts in Pogonophora. J. mar. biol. Ass. U.K. 62: 889–906

    Google Scholar 

  • Trench, R. K. (1979). The cell biology of plant-animal symbiosis. A. Rev. Pl. Physiol. 30: 485–531

    Google Scholar 

  • Vahl, O. (1972). Efficiency of particle retention inMytilus edulis. L. Ophelia 10: 17–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. G. Hadfield, Honolulu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page, H.M., Fisher, C.R. & Childress, J.J. Role of filter-feeding in the nutritional biology of a deep-sea mussel with methanotrophic symbionts. Mar. Biol. 104, 251–257 (1990). https://doi.org/10.1007/BF01313266

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313266

Keywords

Navigation