Skip to main content
Log in

Human chromosome 19 contains the neurotrophin-5 gene locus and three related genes that may encode novel acidic neurotrophins

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Differentiation, survival, and function of the vertebrate neurons are controlled by multiple, target-derived neurotrophic factors. The best characterized mammalian neurotrophic factors are four structurally related 13 to 14 kDa basic proteins, collectively known as neurotrophins. Here we describe the identification of a gene cluster localized on human chromosome 19 that contains neurotrophin-5 (NT-5) and that may encode three additional acidic members of this protein family. The three novel partial open reading frames (ORFs), designated neurotrophin-6-α (NT6-α), NT6-β and NT6-γ, are 95% identical to each other and 75% identical to NT5. The putative matureN-terminal portion of NT6 ORFs does not contain a typical dibasic cleavage site and lacks two out of six cysteines that are conserved among the neurotrophins. The unique structures of NT6-α, -β, and -γ suggest that if the NT6 open reading frames indeed code for functional proteins, these proteins may display novel functions and may act through a distinct class of receptors. In the human, both NTF5 and NTF6 gene loci were mapped to chromosome 19 by Southern analysis of somatic cell hybrid panels. In mouse, the NT5 gene (Ntf-5) was assigned to chromosome 7 and no sequences representing NT6 homologs were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Thoenen, H., Barde, Y.-A., Davies, A.M., and Johnson, J.E. (1987). InSelective Neuronal Death. (Wiley, Chichester, U.K.), Ciba Foundation Symposium12682–95.

    Google Scholar 

  2. Purves, D. (1988).Body and Brain. A Trophic Theory of Neuronal Connections (Harvard University Press, Cambridge).

    Google Scholar 

  3. Barde, Y.A., Edgar, D., and Thoenen, H. (1982).EMBO J. 1549–553.

    Google Scholar 

  4. Korsching, S., and Thoenen, H. (1983).Proc. Natl. Acad. Sci. U.S.A. 803513–3516.

    Google Scholar 

  5. Shelton, D.L., and Reichardt, L.F. (1984).Proc. Natl. Acad. Sci. U.S.A. 817951–7955.

    Google Scholar 

  6. Shelton, D.L., and Reichardt, L.F. (1986).Proc. Natl. Acad. Sci. U.S.A. 832714–2718.

    Google Scholar 

  7. Levi-Montalcini, R., and Hamburger, V. (1951).J. Exp. Zool. 116321–361.

    Google Scholar 

  8. Lindsay, R.M., Thoenen, H., and Barde, Y.-A. (1985).Dev. Biol. 112319–328.

    Google Scholar 

  9. Cowan, W.M., Fawcett, J.W., O'Leary, D.D.M., and Stanfield, B.B. (1984).Science 2251258–1265.

    Google Scholar 

  10. Bradshaw, R.A. (1978).Annu. Rev. Biochem. 47191–216.

    Google Scholar 

  11. Scott, J., Selby, M., Urdea, M., Quiroga, M., Bell, G.I., and Rutter, W.J. (1983).Nature 302538–540.

    Google Scholar 

  12. Ullrich, A., Gray, A., Berman, C., and Dull, T.J. (1983).Nature 303821–825.

    Google Scholar 

  13. Korsching, S., Auburger, G., Heumann, R., Scott, J., and Thoenen, H. (1985).EMBO J. 41389–1393.

    Google Scholar 

  14. Maisonpierre, P.C., Belluscio, L., Friedman, B., Alderson, R.F., Wiegand, S.J., Furth, M.E., Lindsay, R.M., and Yancopoulos, G.D. (1990).Neuron 5501–509.

    Google Scholar 

  15. Hefti, F. (1986).J. Neurosci. 62155–2162.

    Google Scholar 

  16. Rosenthal, A., Goeddel, D.V., Nguyen, T., Martin, E., Burton, L.E., Shih, A., Laramee, G.R., Wurm, F., Mason, A., Nikolics, K., and Winslow, J.W. (1981).Endocrinology 1291289–1294.

    Google Scholar 

  17. Leibrock, J., Lottspeich, F., Hohn, A., Hofer, M., Hengerer, B., Masiakowski, P., Thoenen, H., and Barde, Y.A. (1989).Nature 341149–152.

    Google Scholar 

  18. Ernfors, P., Wetmore, C., Olson, L., and Persson, H. (1990).Neuron 5511–526.

    Google Scholar 

  19. Hofer, M.M., and Barde, Y.-A. (1988).Nature 331261–262.

    Google Scholar 

  20. Johnson, J.E., Barde, Y.-A., Schwab, M., and Thoenen, H. (1986).J. Neurosci. 63031–3038.

    Google Scholar 

  21. Hyman, C., Hofer, M., Barde, Y.-A., Juhasz, M., Yancopoulos, G.D., Squinto, S.P., and Lindsay, R.M. (1991).Nature 350230–232.

    Google Scholar 

  22. Knüsel, B., Winslow, J.W., Rosenthal, A., Burton, L.E., Seid, D.P., Nikolics, K., and Hefti, F. (1991).Proc. Natl. Acad. Sci. U.S.A. 88961–965.

    Google Scholar 

  23. Maisonpierre, P.C., Belluscio, L., Squinto, S., Ip, N.Y., Furth, M.E., Lindsay, R.M., and Yancopoulos, G.D. (1990).Science 2471446–1451.

    Google Scholar 

  24. Ernfors, P., Ibáñez, C.F., Ebendal, T., Olson, L., and Persson, H. (1990b).Proc. Natl. Acad. Sci. U.S.A. 875454–5458.

    Google Scholar 

  25. Hohn, A., Leibrock, J., Bailey, K., and Barde, Y.-A. (1990).Nature 344339–341.

    Google Scholar 

  26. Jones, K.J., and Reichardt, L.F. (1990).Proc. Natl. Acad. Sci. U.S.A. 878060–8064.

    Google Scholar 

  27. Kaisho, Y., Yoshimura, K., and Nakahama, K. (1990).FEBS Lett. 266187–191.

    Google Scholar 

  28. Rosenthal, A., Goeddel, D.V., Nguyen, T., Lewis, M., Shih, A., Laramee, G.R., Nikolics, K., and Winslow, J.W. (1990).Neuron 4767–773.

    Google Scholar 

  29. Halböök, F., Ibáñez, C.F., and Persson, H. (1991).Neuron 6845–858.

    Google Scholar 

  30. Berkemeier, L.R., Winslow, J.W., Kaplan, D.R., Nikolics, K., Goeddel, D.V., and Rosenthal, A. (1991).Neuron 7857–866.

    Google Scholar 

  31. Cattaneo, E., and McKay, R. (1990).Nature 347762–765.

    Google Scholar 

  32. Tessier-Lavigne, M., and Placzek, M. (1990).TINS 14303–310.

    Google Scholar 

  33. Sieber-Blum, M. (1991).Neuron 6949–955.

    Google Scholar 

  34. Cordon-Cardo, C., Tapley, P., Jing, S., Nanduri, V., O'Rourke, E., Lamballe, F., Kovary, K., Jones, K., Reichardt, L., and Barbacid, M. (1991).Cell 66173–183.

    Google Scholar 

  35. Kaplan, D.R., Martin-Zanca, D., and Parada, L.F. (1991).Nature 350158–160.

    Google Scholar 

  36. Klein, R., Conway, D., Parada, L.F., and Barbacid, M. (1991).Cell 61647–656.

    Google Scholar 

  37. Soppet, D., Escandon, E., Maragos, J., Middlemas, D.S., Reid, S.W., Blair, J., Burton, L.E., Stanton, B.R., Kaplan, D.R., Hunter, T., Nikolics, K., and Parada, L.F. (1991).Cell 65895–903.

    Google Scholar 

  38. Squinto, S.P., Stitt, T.N., Aldrich, T.H., Davis, S., Bianco, S.M., Radjiejewski, C., Glass, D.J., Masiakowski, P., Furth, M.E., Valenzuela, D.M., DiStefano, P.S., and Yancopoulos, G.D. (1991).Cell 65885–893.

    Google Scholar 

  39. Lamballe, F., Klein, R., and Barbacid, M. (1991).Cell 66967–979.

    Google Scholar 

  40. Nebreda, A.R., Martin-Zanca, D., Kaplan, D.R., Parada, L.F., and Santos, E. (1991).Science 252558–563.

    Google Scholar 

  41. Glass, D.J., Nye, S.H., Hantzopoulos, P., Macchi, M.J., Squinto, S.P., Goldfarb, M., and Yancopoulos, G.D. (1991).Cell 66405–413.

    Google Scholar 

  42. Southern, E.M. (1975).J. Mol. Biol. 98503.

    Google Scholar 

  43. Angeletti, R.H., Hermodson, M.A. and Bradshaw, R.A. (1973).Biochemistry 12100–115.

    Google Scholar 

  44. McDonald, N.Q., Lapatto, R., Murray-Rust, J., Gunning, J., Wlodawer, A., and Blundell, T.L. (1991).Nature 354411–414.

    Google Scholar 

  45. Eigenbrot, C., Randal, M., and Kossiakoff, A.A. (1990).Protein Eng. 3591–598.

    Google Scholar 

  46. van Mierlo, C.P.M., Darby, J.J., Neuhaus, D., and Creighton, T.E. (1991).J. Mol. Biol. 222373–390.

    Google Scholar 

  47. Young, J.Z. (1981).The Life of Vertebrates (Oxford University Press, New York).

    Google Scholar 

  48. Li, W. (1983). InEvolution of Genes and Proteins (eds.) Nei, M., Koehn, R.K., (Sinauer Assoc., Sunderland, Massachusettes), pp. 14–37.

    Google Scholar 

  49. Estratiadis, A. (1980).Cell 21635–668.

    Google Scholar 

  50. Francke, U., de Martinville, B., Coussens, L., and Ullrich, A. (1983).Science 2221248–1251.

    Google Scholar 

  51. Özçelik, T., Rosenthal, A., and Francke, U. (1991).Genomics 10569–575.

    Google Scholar 

  52. Ohno, S., Wolf, U., and Atkin, N.B. (1968).Hereditas 59169–187.

    Google Scholar 

  53. Rousseaumerck, M.F., Zahraoui, A., Bernheim, A., Touchot, N., Miglierina, R., Tavitian, A., and Berger, R. (1989).Genomics 5694–698.

    Google Scholar 

  54. Davisson M.T., Lalley, P.A., Peters, J., Doolittle, D.P., Hillyard, A.L., and Searle, A.G. (1990).Cell Genet. 55434–456.

    Google Scholar 

  55. Gospodarowicz, D., Ferrara, N., Schweigerer, L., and Neufeld, G. (1987).Endocr. Rev. 895–114.

    Google Scholar 

  56. Flanagan, J.G., Chan, D.C., and Leder, P. (1991).Cell 641025–1035.

    Google Scholar 

  57. Doolittle, D.P., Davisson, M.T., Roderick, T.H., and Hillyard, A.L. (1990).Mouse Genome 8714–27.

    Google Scholar 

  58. van Abeelen, J.H.F. and van der Kroon, P.H.W. (1967).Genet. Res. 10117–118.

    Google Scholar 

  59. Pericak-Vance, M.A., et al. (1991).Am. J. Hum. Genet. 481034–1050.

    Google Scholar 

  60. Francke, U., Yang-Feng, T.L., Brissenden, J.E., and Ullrich, A. (1986).Cold Spring Harbor Symp. Quant. Biol. 51855–866.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkemeier, L.R., Özçelik, T., Francke, U. et al. Human chromosome 19 contains the neurotrophin-5 gene locus and three related genes that may encode novel acidic neurotrophins. Somat Cell Mol Genet 18, 233–245 (1992). https://doi.org/10.1007/BF01233860

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01233860

Keywords

Navigation