Skip to main content
Log in

Hybrid control system design using a fuzzy logic interface

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

A hybrid control system is proposed for regulating an unknown nonlinear plant. The interface between the continuous-state plant and the discrete-event supervisor is designed using a fuzzy logic approach. The fuzzy logic interface partitions the continuous-state space into a finite number of regions. In each region, the original unknown nonlinear plant is approximated by a fuzzy logic-based linear model, then state-feedback controllers are designed for each linear model. A high-level supervisor coordinates (mode switching) the set of closed-loop systems in a stable and safe manner. The stability of the system is studied using nonsmooth Lyapunov functions. For illustration and verification purposes, this technique has been applied to the well-known inverted pendulum balancing problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Antsaklis, M. Lemmon, and J. A. Stiver, Modeling and design of hybrid control systems,Proc. IEEE Mediterranean Symp. on New Directions in Control & Automation, Krete, Greece, June 1994, pp. 440–447.

  2. P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, eds.,Hybrid Systems II, Lecture Notes in Computer Science, vol. 999, Springer, New York, 1995.

    Google Scholar 

  3. B. R. Barmish,New Tools for Robustness of Linear Systems, Macmillan, New York, 1994.

    Google Scholar 

  4. M. S. Branicky, Topology of hybrid systems,Proc. IEEE Conf. Dec. Contr., San Antonio, TX, Dec. 1993, pp. 2309–2314.

  5. M. S. Branicky, Stability of switched and hybrid systems,Proc. IEEE Conf. Dec. Contr., Lake Buena Vista, FL, Dec. 1994, pp. 3498–3503.

  6. M. Dogruel and Ü. Özgüner, Modeling and stability issues in hybrid systems, in[2],, 1995, pp. 148–165.

    Google Scholar 

  7. R. Fierro and F. L. Lewis, A framework for hybrid control design,IEEE Trans. Syst., Man, Cyber., vol. 27-A, no. 6, 1997, to appear.

  8. R. Fierro, F. L. Lewis, and C. T. Abdallah, Common, multiple and parametric Lyapunov functions for a class of hybrid dynamical systems,Proc. IEEE Mediterranean Symp. on New Directions in Control & Automation, Krete, Greece, June 1996, pp. 77–82.

  9. A. F. Filippov,Differential Equations with Discontinuous Righthand Sides, Kluwer Academic Publishers, Dordrecht, 1988.

    Google Scholar 

  10. L. El Ghaoui, R. Nikoukhah, and F. Delebecque, LMITOOL: A package for LMI optimization,Proc. IEEE Conf. Dec. Contr., New Orleans, LA, Dec. 1995, pp. 3096–3101.

  11. H. K. Khalil,Nonlinear Systems, Macmillan, New York, 1992.

    Google Scholar 

  12. M. Lemmon and C. Bett, Robust hybrid control system design,Proc. IFAC 13th Triennial World Congress, San Francisco, June 1996, pp. 395–400.

  13. K. Liu and F. L. Lewis, Adaptive tuning of fuzzy logic identifier for unknown nonlinear systems,Int. J. Adaptive Control and Signal Processing, vol. 8, pp. 573–586, 1994.

    Google Scholar 

  14. J. Lygeros, A formal approach to fuzzy modeling, Tech. Rep. UCB/ERL M95/15, Electronics Research Laboratory, University of California Berkeley, March 1995.

  15. J. Malmborg, B. Bernhardsson, and K. J. Aström, A stabilizing switching scheme for multicontroller systems,Proc. IFAC 13th Triennial World Congress, San Francisco, CA, June 1996, pp. 229–234.

  16. J. M. Mendel, Fuzzy logic systems for engineering: A tutorial,Proc. IEEE, vol. 83, no. 3, pp. 345–377, 1995.

    Google Scholar 

  17. A. Nerode and W. Kohn, Models for hybrid systems: Automata, topologies, controllability, observability,Hybrid Systems, Lecture Notes in Computer Science, R. Grossman, A. Nerode, A. Ravn, and H. Rischel, eds., vol. 736, Springer, New York, 1993, pp. 317–356.

    Google Scholar 

  18. P. Peleties and R. A. DeCarlo, Asymptotic stability of m-switched systems based on Lyapunov-like functions,Proc. American Contr. Conf., Boston, MA, June 1991, pp. 1679–1683.

  19. W. A. Sethares, B. D. O. Anderson, and C. R. Johnson, Jr., Adaptive algorithms with filtered regressor and filtered error,Math. Contr. Sig. Syst., no. 2, pp. 381–403, 1989.

    Google Scholar 

  20. J. Shamma and M. Athans, Guaranteed properties of gain scheduled control for linear parametervarying plants,Automatica, vol. 27, no. 3, pp. 559–564, 1991.

    Google Scholar 

  21. D. Shevitz and B. Paden, Lyapunov stability theory of nonsmooth systems,IEEE Trans. Autom. Contr., vol. 39, no. 9, pp. 1910–1914, 1994.

    Google Scholar 

  22. J. E. Slotine and W. Li,Applied Nonlinear Control, Prentice-Hall, Englewood Cliffs, NJ, 1991.

    Google Scholar 

  23. K. Tanaka and M. Sugeno, Stability analysis and design of fuzzy control systems,Fuzzy Sets Syst., vol. 45, no. 2, pp. 135–156, 1992.

    Google Scholar 

  24. H. O. Wang, K. Tanaka, and M. F. Griffin, An approach to fuzzy control of nonlinear systems: Stability and design issues,IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 14–23, 1996.

    Google Scholar 

  25. H. Ye, A. N. Michel, and L. Huo, Stability theory for hybrid dynamical systems,Proc. IEEE Conf. Dec. Contr., New Orleans, LA, Dec. 1995, pp. 2679–2684.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fierro, R., Lewis, F.L. & Liu, K. Hybrid control system design using a fuzzy logic interface. Circuits Systems and Signal Process 17, 401–419 (1998). https://doi.org/10.1007/BF01202300

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01202300

Keywords

Navigation