Skip to main content
Log in

Far infrared fourier transform spectroscopy of semiconductors

  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Fourier transform spectroscopy (FTS) is one of the most important tools in the study of shallow level donors and acceptors in semiconductors. When combined with a two-step photothermal ionization process detected photoconductively, FTS allows measurement of optical transitions of donor-bound electrons (and acceptor-bound holes) in ultra-pure germanium samples with impurity concentrations <109 cm−3 (i.e. one electrically active impurity in 4×1013 host atoms). The experimental high resolution study of the hydrogen-like excited state series of shallow levels has yielded as many as 19 lines of width as small as 10μeV for some centers. These results have stimulated theoretical work which has led to the unambiguous assignment of quantum states to many bound excited states. Extensive studies of ultra-pure Ge crystals grown under different well-controlled conditions have led to the discovery of a large number of novel shallow impurity complexes. Study of the multiplicities and symmetries of the associated electronic states has led to a detailed understanding of the unusual static and dynamic structures of these novel centers. The chemical composition has been deduced from correlations between the concentration of a particular center and the materials involved in crystal gowth. Isotopic substitution of hydrogen with deuterium has led to the unambiguous proof of the presence of hydrogen in several of the novel centers. In addition to the high resolution spectra of shallow electronic levels, vibrational spectra of bond-centered interstitial oxygen in ultra-pure Ge are noteworthy for their extraordinarily sharp lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Ramdas, S. Rodriguez,Rept. on Prog. in Phys. 1981,44, 1297.

    Google Scholar 

  2. C. Kittel, A. H. Mitchell,Phys. Rev. 1954,96, 1488.

    Google Scholar 

  3. W. Kohn, J. M. Luttinger,Phys. Rev. 1955,97, 869.

    Google Scholar 

  4. R. A. Faulkner,Phys. Rev. 1969,184, 713.

    Google Scholar 

  5. J. Broeckx, P. Clauws, J. Vennik,J. Phys. C 1986,19, 511.

    Google Scholar 

  6. C. Jagannath, Z. W. Grabowski, A. K. Ramdas,Solid State Comm. 1979,29, 355; see also: C. Jagannath, Z. W. Grabowski, A. K. Ramdas,Phys. Rev. B 1981,23, 2082.

    Google Scholar 

  7. See, for example, articles in:Proc. of the Fourth Neutron Transmutation Doping Conference (R. D. Larrabee, ed.), Plenum Press, New York-London, 1984.

    Google Scholar 

  8. R. L. Jones, P. Fisher,J. Phys. Chem. Solids 1965,26, 1125.

    Google Scholar 

  9. A. Baldereschi, N. O. Lipari,Phys. Rev. B 1973,8, 2697;Phys. Rev. B 1974,9, 1525;Proc. 13th Intl. Conf. Phys. Semiconductors (F. G. Fumi, ed.), North Holland, Amsterdam, 1976, p. 595.

    Google Scholar 

  10. E. E. Haller, W. L. Hansen,Solid State Comm. 1974,15, 687.

    Google Scholar 

  11. E. E. Haller, W. L. Hansen, F. S. Goulding,Adv. in Phys. 1981,30, 93.

    Google Scholar 

  12. S. D. Seccombe, D. M. Korn,Solid State Comm. 1972,11, 1539.

    Google Scholar 

  13. M. S. Skolnik, L. Eaves, R. A. Stradling, J. C. Portal, S. Asknazy,Solid State Comm. 1974,15, 1403.

    Google Scholar 

  14. E. E. Haller,MRS Symposia Proc. 46 (N. M. Johnson, S. G. Bishop, G. D. Watkins, eds.), Mat. Res. Soc., Pittsburgh, PA, 1985, p. 495.

    Google Scholar 

  15. W. L. Hansen, E. E. Haller,Mat. Res. Soc. Symp. Proc. 1983,16, 1.

    Google Scholar 

  16. R. Barrie, K. Nishikawa,Can. J. Phys. 1963,41, 1823.

    Google Scholar 

  17. K. Nishikawa, R. Barrie,Can. J. Phys. 1963,41, 1135.

    Google Scholar 

  18. E. O. Kane,Phys. Rev. 1960,119, 40.

    Google Scholar 

  19. B. Pajot, J. Kauppinen, R. Anttilla,Solid State. Comm. 1979,31, 759.

    Google Scholar 

  20. H. Navarro, E. E. Haller, F. Keilmann,Phys. Rev. B. 1988 (in press).

  21. B. Pajot, A. M. Stoneham,J. Phys. C: Solid State Phys. (submitted).

  22. T. M. Lifshits, F. Ya. Nad,Sov. Phys. Dokl. 1965,10, 532; for a review, see: Sh. M. Kogan, T. M. Lifshits,Phys. Stat. Sol. (a) 1977,39, 11.

    Google Scholar 

  23. Sh. M. Kogan,Sov. Phys. Semicon. 1973,1, 828.

    Google Scholar 

  24. G. Bambakidis, G. J. Brown,Phys. Rev. B 1986,33, 8180.

    Google Scholar 

  25. M. J. H. van de Steeg, H. W. H. M. Jongbloets, J. W. Gerritsen, P. Wyder,J. Appl. Phys. 1983,54, 3464.

    Google Scholar 

  26. R. H. Hall,IEEE Trans. Nucl. Sci. 1974,NS-21, 260;Inst. Phys. Conf. Series 1975,23, 190.

    Google Scholar 

  27. E. E. Haller,Phys. Rev. Lett. 1978,40, 584.

    Google Scholar 

  28. L. S. Darken,J. Appl. Phys. 1982,53, 3754.

    Google Scholar 

  29. L. M. Falicov, E. E. Haller,Solid State Comm. 1985,53, 1121.

    Google Scholar 

  30. E. E. Haller, B. Joos, L. M. Falicov,Phys. Rev. B 1980,21, 4729.

    Google Scholar 

  31. K. Muro, A. J. Sievers,Phys. Rev. Lett. 1986,57, 897.

    Google Scholar 

  32. J. M. Kahn, R. E. McMurray Jr., E. E. Haller, L. M. Falicov,Phys. Rev. B 1987,36, 8001.

    Google Scholar 

  33. R. E. McMurray Jr., N. M. Haegel, J. M. Kahn, E. E. Haller,Solid State Comm. 1987,61, 27.

    Google Scholar 

  34. N. M. Haegel, E. E. Haller,Infrared Phys. 1986,26, 247.

    Google Scholar 

  35. N. M. Haegel, P. N. Luke, E. E. Haller,Intl. J. Infrared and Millimeter Waves 1983,4, 945.

    Google Scholar 

  36. J. I. Pankove, D. E. Carlson, J. E. Berkeyheiser, R. O. Wance,Phys. Rev. Lett. 1983,51, 2224.

    Google Scholar 

  37. J. M. Kahn, L. M. Falicov, E. E. Haller,Phys. Rev. Lett. 1986,57, 2077.

    Google Scholar 

  38. I. S. Newton,Principia, Vol. II: The Motion of Bodies, Cambridge, 1686.

  39. A. S. Barker, A. J. Sievers,Rev. Mod. Phys. 1975,47 (Suppl. 2), 1.

    Google Scholar 

  40. See, for example: N. W. Ashcroft, N. D. Mermin,Solid State Physics, Saunders College, Holt, Rinehart and Winston, Philadelphia, PA, 1976.

    Google Scholar 

  41. J. S. Blakemore,J. Appl. Phys. 1982,53, R123.

    Google Scholar 

  42. D. R. Bosomworth, W. Hayes, A. R. L. Spray, G. D. Watkins,Proc. Phys. Soc. London 1970,A317, 133.

    Google Scholar 

  43. B. Pajot, P. Clauws,Proc. 18th Intl. Conf. Phys. Semiconductors (O. Engstroem, ed.), World Science, Singapore, 1986, p. 911.

    Google Scholar 

  44. W. M. Theis, K. K. Bajaj, C. W. Liton, W. G. Spitzer,Appl. Phys. Lett. 1982,44, 70.

    Google Scholar 

  45. R. S. Leigh, R. C. Newman,J. Phys. C: Solid State Phys. 1982,15, L 1045.

    Google Scholar 

  46. G. Herzberg,Molecular Spectra and Molecular Structure II: Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, Princeton, NJ, 1945.

    Google Scholar 

  47. B. V. Shanabrook, W. J. Moore, T. A. Kennedy, P. P. Ruden,Phys. Rev. B 1984,30, 3563.

    Google Scholar 

  48. W. Walukiewicz, E. Bourret, W. F. Yau, R. E. McMurray Jr., E. E. Haller, D. Bliss,Proc. Intl. Symp. on Defect Recognition and Image Processing in III-V Compounds II (E. Weber, ed.), Elsevier, Amsterdam, 1987, p. 297.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haller, E.E. Far infrared fourier transform spectroscopy of semiconductors. Mikrochim Acta 93, 241–261 (1987). https://doi.org/10.1007/BF01201693

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01201693

Key words

Navigation