Skip to main content
Log in

Discrete models for chemically reacting systems

  • Review
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Nonequilibrium spatially distributed chemically reacting systems are usually described in terms of reaction-diffusion equations. In this article, a hierarchy of discrete models is studied that show similar spatio-temporal structure and can be used to explore the complex phenomena occurring in these systems. We consider cellular automaton models where space, time and chemical concentrations are discrete and the dynamics is embodied in a simple updating rule, coupled map lattices where space and time are discrete variables but chemical concentrations are continuous and the dynamics is given by a nonlinear function and, lastly, lattice gas cellular automaton models that view the system on a microscopic or mesoscopic level where space, time and particle velocities are discrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, for example, R.J. Field and M. Burger (eds.),Oscillations and Traveling Waves in Chemical Systems, (Wiley, New York, 1986);

    Google Scholar 

  2. P. Bergé, Y. Pomeau and C. Vidal,Order Within Chaos (Wiley, New York, 1984);

    Google Scholar 

  3. G. Nicolis and F. Baras (eds.),Chemical Instabilities (Reidel, Dordrecht, 1984).

    Google Scholar 

  4. See, for example, P. Fife, in:Non-Equilibrium Dynamics in Chemical Systems, ed. C. Vidal and A. Pocault (Springer, Berlin. 1984), p. 76.

    Google Scholar 

  5. B. Halperin and P. Hohenberg, Rev. Mod, Phys. 49 (1977)435.

    Google Scholar 

  6. A.C. Newell, in:Lectures in Applied Mathematics, Vol. 15 (Amer. Math. Soc., Providence, 1974).

  7. Y. Kuramoto,Chemical Oscillations, Waves and Turbulence (Springer, Berlin, 1980).

    Google Scholar 

  8. J. Von Neumann,Theory of Self-Reproducing Automata, ed. A.W. Burks (University of Illinois, Urbana, 1966).

    Google Scholar 

  9. E.F. Codd,Cellular Automata (Academic Press, New York, 1986);

    Google Scholar 

  10. G. Langton, Physica D10 (1984)135.

    Google Scholar 

  11. S. Wolfram, Rev. Mod. Phys. 55 (1983)601.

    Google Scholar 

  12. D. Farmer, T. Toffoli and S. Wolfram (eds.),Cellular Automata (North-Holland, Amsterdam, 1984);

    Google Scholar 

  13. S. Wolfram (ed.),Theory and Applications of Cellular Automata (World Scientific, Singapore, 1986);

    Google Scholar 

  14. J. Demongeot, E. Cole and M. Tchuente,Dynamical Systems and Cellular Automata (Academic Press, New York, 1985).

    Google Scholar 

  15. J.T. Tyson and J.P. Keener, Physica D33 (1988)327.

    Google Scholar 

  16. A.T. Winfree, SIAM Rev. 32 (1990)1.

    Google Scholar 

  17. J. Grasman,Asymptotic Methods for Relaxation Oscillations and Applications (Springer, New York, 1987).

    Google Scholar 

  18. N. Wiener and A. Rosenblueth, Arch. Inst. Cardiol. Mexico 16 (1946)205.

    Google Scholar 

  19. A.T. Winfree, Science 175 (1972)634;ibid. 181(1973)937.

    Google Scholar 

  20. G.K. Moe, W.C. Rheinboldt and J.A. Abildskov, Amer. Heart J. 67 (1964)200;

    PubMed  Google Scholar 

  21. G.K. Moe and J.A. Abildskov, Amer. Heart J. 58 (1959)59.

    PubMed  Google Scholar 

  22. V.I. Krinsky, Biophys. 11 (1966)676,

    Google Scholar 

  23. D.T. Kaplan, J.M. Smith, B.E.H. Saxberg and R.J. Cohen, Math. Biosci. 90 (1988)19.

    PubMed  Google Scholar 

  24. L.V. Reshodko and J. Bures, Biol. Cybernetics 18 (1975)181.

    Google Scholar 

  25. P. Foerster, S.C. Müller and B. Hess, Science 241 (1988)685.

    Google Scholar 

  26. J.P. Keener, SIAM J. Appl. Math. 46 (1986)1039;

    Google Scholar 

  27. J.P. Keener and J.J. Tyson, Physica D21 (1986)307.

    Google Scholar 

  28. E. Meron and P. Pelcé, Phys. Rev. Lett. 60 (1988)1880; E. Moron, Phys. Rev. Lest. 63(1989)684.

    PubMed  Google Scholar 

  29. A.V. Holden, M. Markus and H.G. Othmer (eds.),Nonlinear Wave Processes in Excitable Media (Plenum Press, New York, 1991).

    Google Scholar 

  30. V.S. Zykov,Simulation of Wave Processes in Excitable Media (Manchester University Press, Manchester, 1987).

    Google Scholar 

  31. S.C. Müller, T. Plesser and B. Hess, Science 230 (1985)661.

    Google Scholar 

  32. O.E. Rössler and C. Kahlert, Z. Naturforsch. 34a (1979)565.

    Google Scholar 

  33. W. Jahnke, W.E. Skaggs and A.T. Winfree, J. Chem. Phys. 93 (1989)740.

    Google Scholar 

  34. G. Skinner and H.L. Swinney, Physica D, to be published.

  35. D. Barkley, M. Kness and S. Tuckerman, Phys. Rev. A42 (1990)2489.

    PubMed  Google Scholar 

  36. C. Elphick and E. Moron,Spiral Vortex Interactions, to be published;

  37. S. Rica and E. Tirapegui, Phys. Rev. Lett. 64 (1990)878.

    PubMed  Google Scholar 

  38. A.T. Winfree and W. Jahnke, J. Phys. Chem. 93 (1989)2823;

    Google Scholar 

  39. A.T. Winfree and S.H. Strogatz, Physica D8 (1983)35;ibid. 13(1984)221.

    Google Scholar 

  40. P.J. Nandapurkar and A.T. Winfree, Physica D29 (1987)69;

    Google Scholar 

  41. J.P. Keener, Physica D31 (1988)269.

    Google Scholar 

  42. A.T. Winfree, E.M. Winfree and H. Seifert, Physica D17 (1985)109;

    Google Scholar 

  43. A.V. Panfilov and A.T. Winfree, Physica D17 (1985)323.

    Google Scholar 

  44. S.J. Fraser and Y.S. Kan, Nucl. Phys. B 5A (1988)241;

    Google Scholar 

  45. A.J. Irwin and S.J. Fraser, J. Chem. Phys., to be published.

  46. S. Fraser and R. Kapral, J. Chem. Phys. 85 (1986)5682.

    Google Scholar 

  47. D. Stauffer, Phys. Rep. 54 (1979)1,

    Google Scholar 

  48. E.N. Gilbert, SIAM J. Appl. Math. 9 (1961)533.

    Google Scholar 

  49. R.M. Bradley, J. Chem. Phys. 86 (1987)7245.

    Google Scholar 

  50. W.A. Johnson and R. Mehl, Trans. AIME 135 (1939)416;

    Google Scholar 

  51. M. Avrami, J. Chem. Phys. 7 (1939)1103; ibid. 8(1940)212.

    Google Scholar 

  52. M. Weinberg and R. Kapral, J. Chem. Phys. 91 (1989)7189.

    Google Scholar 

  53. R. Fisch, J. Gravner and D. Griffeath, unpublished.

  54. J.M. Greenberg, B.D. Hassard and S.P. Hastings, Amer. Math. Soc. 84 (1978)1296;

    Google Scholar 

  55. J.M. Greenberg and S.P. Hastings, SIAM J. Appl. Math. 34 (1978)515.

    Google Scholar 

  56. D. Griffeath, Notices Amer. Math. Soc. 35 (1988)1472.

    Google Scholar 

  57. M. Markus and B. Hess, in:Dissipative Structures in Transport and Combustion, Vol. 48, ed. D. Meinköhn (Springer, Heidelberg, 1990), p. 197.

    Google Scholar 

  58. M. Markus and B. Hess, Nature 347 (1990)56.

    Google Scholar 

  59. M. Gerhardt, H. Schuster and J.J. Tyson, Science 247 (1990)1563.

    PubMed  Google Scholar 

  60. W. Freedman and B. Madore, Astrophys. J. 265 (1983)140;

    Google Scholar 

  61. W. Freedman and B. Madore, Science 222 (1983)615;

    Google Scholar 

  62. L.S. Schulman and P.E. Seiden, Science 233 (1986)425.

    Google Scholar 

  63. A.L. Hodgkin and A.F. Huxley, J. Physiol. 117 (1952)500;

    PubMed  Google Scholar 

  64. D. DiFrancesco and D. Noble, Phil. Trans. Roy. Soc. B307 (1985)353.

    Google Scholar 

  65. A.T. Winfree,The Geometry of Biological Time (Springer, New York, 1980).

    Google Scholar 

  66. A.T. Winfree,When Time Breaks Down: The Three Dimensional Dynamics of Electrochemical Waves and Cardiac Arrythmias (Princeton University Press, Princeton, 1987).

    Google Scholar 

  67. B.P. Belousov, in:Sbornik Referatov po Radiatsionni Meditsine (Medgiz, Moscow, 1958);

    Google Scholar 

  68. A.M. Zhabotinsky, Biofizika 9 (1964)306.

    Google Scholar 

  69. See, for example, R.M. Berne and M.N. Levy,Cardiovascular Physiology (C.V. Mosby, St. Louis, 1981);

    Google Scholar 

  70. A.M. Katz,Physiology of the Heart (Raven Press, New York, 1977).

    Google Scholar 

  71. J.M. Smith, A.L. Ritzenberg and R.J. Cohen, Comp. Cardiol. 201(1983);

  72. J.M. Smith and R.J. Cohen, Proc. Nad. Acad. Sci. USA 81 (1984)233.

    Google Scholar 

  73. M.-N. Chee, S.G. Whittington and R. Kapral, Physica D32 (1988)437.

    Google Scholar 

  74. J. Maselko, J.S. Reckley and K. Showalter, J. Phys. Chem. 93 (1989)2774.

    Google Scholar 

  75. J. Maselko and K. Showalter, Physica D, to be published.

  76. W.Y. Tam, W. Horsthemke, Z. Noszticius and H.L. Swinney, J. Chem. Phys. 88 (1988)3395.

    Google Scholar 

  77. V. Castets, E. Dulos, J. Boissonade and P. DeKepper, Phys. Rev. Lett. 64 (1990)2953.

    PubMed  Google Scholar 

  78. W.Y. Tan, J.A. Vastano, H.L. Swinney and W. Horsthemke, Phys. Rev. Lett. 61 (1988)2163;

    PubMed  Google Scholar 

  79. Q. Quang, J. Boissonade, J.-C. Roux and P. DeKepper, Phys. Lett. A134 (1989)282.

    Google Scholar 

  80. A.M. Turing, Phil. Trans. Roy. Soc. B237 (1952)37.

    Google Scholar 

  81. A. Arneodo and J. Elezgaray, Phys. Lett. A143 (1990)25;

    Google Scholar 

  82. A. Arneodo, J. Elezgaray, J. Pearson and T. Russo, Instabilities in front patterns in reaction-diffusion systems, to be published;

  83. J.A. Vastano, T. Russo and H.L. Swinney, Physica D46 (1990)23.

    Google Scholar 

  84. R.J. Shwankner, M. Eiswirth, P. Moller, K. Weltzl and G. Ertl, J. Chem. Phys. 87 (1987)742;

    Google Scholar 

  85. P. Moller, K. Wetzl, M. Eiswirth and G. Ertl, J. Chem. Phys. 85 (1986)5328.

    Google Scholar 

  86. R.M. Ziff, E. Gulari and Y. Barshad, Phys. Rev. Lett. 56 (1986)2553.

    PubMed  Google Scholar 

  87. M. Gerhardt and H. Schuster, Physica D36 (1989)209.

    Google Scholar 

  88. B. Chopard and M. Droz, J. Phys. A21 (1988)205.

    Google Scholar 

  89. A. Canning and M. Droz, Physica D, to be published.

  90. H.S. Berryman and R. Franceschetti, Phys. Lett. A136 (1989)348.

    Google Scholar 

  91. H. Hartman and P. Tamayo, Physica D, to be published.

  92. I. Waller and R. Kapral, Phys. Rev. A30 (1984)2047;

    Google Scholar 

  93. R. Kapral, Phys. Rev. A31 (1985)3868.

    PubMed  Google Scholar 

  94. K. Kaneko, Prog. Theor. Phys. 72 (1984)480: ibid. 74(1985)1033.

    Google Scholar 

  95. R.J. Diessler, Phys. Lett. A100 (1984)451.

    Google Scholar 

  96. J.P. Crutchfield and K. Kaneko, in:Directions in Chaos, ed. Hao Bai-lin (World Scientific, Singapore, 1987);

    Google Scholar 

  97. K. Kaneko, Physica D34 (1989)1;

    Google Scholar 

  98. K. Kaneko, in:Formation, Dynamics and Statics of Patterns, ed. K. Kawasaki (World Scientific, Singapore, 1989);

    Google Scholar 

  99. R. Kapral, M.-N. Chee, S.G. Whittington and G.-L. Oppo, in:Measures of Complexity and Chaos, ed. N.B. Abraham, A.M. Albano, A. Passamante and P.E. Rapp (Plenum, New York, 1989), p. 381;

    Google Scholar 

  100. R. Kapral, in:Self-Organization, Emerging Properties and Learning, ed. A. Babloyantz (Plenum, New York, 1990).

    Google Scholar 

  101. See, for example, J. Boissonade and P. DeKepper, in:Oscillations and Traveling Waves in Chemical Systems, ed. R.J. Field and M. Burger (Wiley, New York, 1985),

    Google Scholar 

  102. M. Alamgir and I. Epstein, J. Amer. Chem. Sue. 105 (1983)2500;

    Google Scholar 

  103. P. Lamba and J.L. Hudson, Chem. Engin. Comm. 32 (1985)369;

    Google Scholar 

  104. P. Rehmus, W. Vance and J. Ross, Chem. Phys. 80 (1984)373;

    Google Scholar 

  105. I. Epstein, J. Phys. Chem. 88 (1984)187.

    Google Scholar 

  106. F. Schlögl, Z. Phys. 253 (1972)147;

    Google Scholar 

  107. F. Schlögl, C. Escher and R.S. Berry, Phys. Rev. A27 (1983)2698.

    Google Scholar 

  108. A. Hanna, A. Soul and K. Showalter, J. Amer. Chem. Soc. 104 (1982)3838;

    Google Scholar 

  109. A. Soul and K. Showalter, in:Oscillations and Traveling Waves in Chemical Systems, ed. R.J. Field and M. Burger (Wiley, New York, 1985), p. 419.

    Google Scholar 

  110. J.R. Roebuck, J. Phys. Chem. 6 (1902)365;

    Google Scholar 

  111. J.N. Pendlebury and R.H.Smith, Int. J. Chem. Kin. 6 (1974)663.

    Google Scholar 

  112. J.D. Gunton, M. San Miguel and P. Sanhi, in;Phase Transitions and Critical Phenomena, ed. C. Domb and J.L. Lebowitz (Academic Press, New York, 1983).

    Google Scholar 

  113. S.M. Allen and J.W. Cahn, Acta Metall. 27 (1979)1085.

    Google Scholar 

  114. R. Kapral and G.-L. Oppo, Physica D23 (1986)455;

    Google Scholar 

  115. G.-L. Oppo and R. Kapral, Phys. Rev. A36 (1987)5820.

    PubMed  Google Scholar 

  116. G-L. Oppo and R. Kapral, in:Spatial and Transient Behavior in Chemical Kinetics, ed. P. Gray, G. Nicolis, F. Baras, P. Borckmans and S.K. Scott (Manchester University Press, Manchester, 1990), p. 335.

    Google Scholar 

  117. T.M. Rogers, K.R. Elder and R.C. Desai, Phys. Rev. B37 (1988)9638;

    Google Scholar 

  118. R. Elder, T.M. Rogers and R.C. Desai, Phys. Rev. B38 (1988)4725.

    Google Scholar 

  119. B. Widom and J. Rowlinson,The Molecular Theory of Capillarity (Clarendon Press, Oxford, 1982).

    Google Scholar 

  120. A.M. Albano, N.B. Abraham, D.E. Chyba and M. Martelli, Amer. J. Phys. 52 (1983)161.

    Google Scholar 

  121. S. Puri, R.C. Desai and R. Kapral, Coupled map model with a conserved order parameter, Physica D, to be published.

  122. V.L. Prokrovsky, J. de Phys. 42 (1981)761;

    Google Scholar 

  123. P. Bak and V.L. Prokovsky, Phys. Rev. Lett. 47 (1981)958;

    Google Scholar 

  124. S.E. Burkov, V.L. Prokovsky and G. Uimim, J. Phys. A15 (1982)L645;

    Google Scholar 

  125. S. Aubry, in:Bifurcation Phenomena in Mathematical Physics, ed. C. Bardis and D. Bessis (Reidel, Dordrecht, 1981).

    Google Scholar 

  126. Y. Oono and S. Puri, Phys. Rev. Lett. 58 (1987)836.

    PubMed  Google Scholar 

  127. S. Puri and Y. Oono, Phys. Rev. A38 (1988)1542.

    PubMed  Google Scholar 

  128. I. Prigogine and R. Lefever, J. Chem. Phys. 48 (1968)1695.

    Google Scholar 

  129. G. Nicolis and I. Prigogine,Self Organization in Nonlinear Systems (Wiley, New York, 1977).

    Google Scholar 

  130. T. Bohr, A.W. Pedersen, M.H. Jensen and D.A. Rand, in:New Trends in Nonlinear Dynamics and Pattern Forming Processes, ed. P. Coullet and P. Heurre (Plenum, New York, 1989).

    Google Scholar 

  131. X.-G. Wu and R. Kapral, J. Chem. Phys., to be published.

  132. P. Coullet, L. Gil and J. Lega, Phys. Rev. Lett. 62 (1989)161.

    Google Scholar 

  133. M.-N. Chee, R. Kapral and S.G. Whittington, J. Chem. Phys. 92 (1990)7315,

    Google Scholar 

  134. E.N. Best, Biophys. J. 27 (1979)87,

    PubMed  Google Scholar 

  135. M.R. Guevara and L. Glass, J. Math. Biol. 14 (1982)1;

    PubMed  Google Scholar 

  136. L. Glass, M.R. Guevara, J. Belair and A. Sprier, Phys, Rev. A29 (1984)1348;

    Google Scholar 

  137. L. Glass and A.T. Winfree, Amer. J. Physiol. 246 (1984)251.

    Google Scholar 

  138. M. Kawato, J. Math. Biol. 12 (1981)13;

    Google Scholar 

  139. M. Kawato and R. Suzuki, Biol. Cyber. 30 (1978)241;

    Google Scholar 

  140. S. Strogatz, Math. Intelligenzer 7 (1985)9.

    Google Scholar 

  141. M.-N. Chee, R. Kapral and S.G. Whittington, J. Chem. Phys. 92 (1990)7302

    Google Scholar 

  142. P. Ortoleva and J. Ross, J. Chem. Phys. 60 (1974)5090.

    Google Scholar 

  143. G.Z. Shivasinsky, Acta Astronaut 4 (1977)1177.

    Google Scholar 

  144. P. Coullet, in:Measures of Complexity and Chaos, ed. N.B. Abraham, A.M. Albano, A. Passamante and P.E. Rapp (Plenum, New York, 1989).

    Google Scholar 

  145. M.-N. Chee, X.-G. Wit and R. Kapral, to be published.

  146. R. Livi and R. Kapral, to be published.

  147. C.H. Bennett, G. Grinstein, Y. He, C. Jayaprakash and D. Mukamel, Phys. Rev. A41 (1990)1932.

    PubMed  Google Scholar 

  148. A. Babloyantz, J.A. Sepulchre and L. Steels, A network of oscillators can perform tasks without prior training, to be published;

  149. A. Babloyantz and J.A. Sepulchre, Front propagation into unstable media: A computational tool, to be published.

  150. P. Hanusse, Perez-Munuzuri and C. Vidal, in:Nonlinear Wave Processes in Excitable Media, ed. A.V. Holden, M. Markus and H.G. Othmer (Plenum, New York, 1991)

    Google Scholar 

  151. D. Barkley, in:Proc. Pushchino Conf. on Waves in Excitable Media, Physica D, to be published..

  152. J.D. Keeler, An explicit relation between coupled maps, cellular automata and reaction-diffusion equations, UCSD Preprint (1986);

  153. J.D. Keeler and J.D. Farmer, Physica D23 (1986)413.

    Google Scholar 

  154. A.T. Winfree, Sci. Amer. 230 (1974)82.

    Google Scholar 

  155. J.J. Tyson and P.C. Fife, J. Chem. Phys. 73 (1980)2224.

    Google Scholar 

  156. Y. Oono and M. Kohmoto, Phys. Rev. Lett. 35 (1985)2927;

    Google Scholar 

  157. see also Y. Oono and C. Yeung, J. Slat. Phys. 48 (1987)593.

    Google Scholar 

  158. J. Hardy, O. de Pazzis and Y. Pomeau, Phys. Rev. A13 (1976)1949;

    Google Scholar 

  159. U. Frisch, B. Hasslacher and Y. Pomeau, Phys. Rev. Lett. 56 (1986)1505.

    PubMed  Google Scholar 

  160. D. d'Humiéres, B. Hasslacher, P. Lallemand, Y. Pomeau and J.P. Rivet, Complex System, 1 (1987)648

    Google Scholar 

  161. P. Manneville, N. Boccara, G.Y. Vichniac and R. Bidaux (eds.),Cellular Automata and Modeling of Complex Physical Systems (Springer, Berlin, 1989).

    Google Scholar 

  162. D. D'Humiéres, Y.H. Quain and P. Lallemand, in:Discrete Kinetic Theory, Lattice Gas Dynamics and the Foundations of Hydrodynamics, ed. I.S.I. and R. Monaco (World Scientific, Singapore, 1989, p. 102.

    Google Scholar 

  163. G. Doolen (ed.),Lattice Gas Methods for Partial Differential Equations (Addison-Wesley, New York, 1990).

    Google Scholar 

  164. D. Dab, A. Lawniczak, J.-P. Boon and R. Kapral, Phys. Rev. Lett. 64 (1990)2462.

    PubMed  Google Scholar 

  165. D. Dab and J.P. Boon, in:Cellular Automata and Modeling of Complex Physical Systems, ed. P. Manneville (Springer, Berlin, 1989), p. 257.

    Google Scholar 

  166. A. Lawniczak, D. Dab, R. Kapral and J.P. Boon, Physica D, to be published.

  167. S. Wolfram, J. Stat. Phys. 45 (1986)471.

    Google Scholar 

  168. P. Calvin, P. Lallemand, Y. Pomeau and G. Searby, J. Fluid Mech. 188 (1989)437;

    Google Scholar 

  169. V. Zehnle and G. Searby, J. de Phys. 50 (1989)1083.

    Google Scholar 

  170. D. Walgraef, G. Dewel and P. Borckmans, Z. Phys. B48 (1982)167;

    Google Scholar 

  171. D. Walgraef, G. Dewel and P. Borckmans, J. Chem. Phys. 78 (1983)3043.

    Google Scholar 

  172. G.A. Bird, in:Molecular Simulations in Complex Flows, ed. M. Mareschal (Plenum, New York, 1998)

    Google Scholar 

  173. C. Vidal and H. Lemarchand,La Réaction Créatrice (Hermann, Paris, 1988).

    Google Scholar 

  174. T.M. Liggett,Interacting Particle Systems (Springer, New Tork, 1985).

    Google Scholar 

  175. R. Kopelman, Science 241 (1988)1620;

    Google Scholar 

  176. R. Kopelman, in:The Fractal Approach to Heterogeneous Chemistry, ed. D. Avnir (Wiley, New York, 1989);

    Google Scholar 

  177. C.R. Doering and D. Ben-Abraham, Phys. Rev. A38 (1988)3035;

    PubMed  Google Scholar 

  178. K. Lindenberg, B.J. West and R. Kopelman, Phys. Rev. Lett. 32 (1988)626.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapral, R. Discrete models for chemically reacting systems. J Math Chem 6, 113–163 (1991). https://doi.org/10.1007/BF01192578

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01192578

Keywords

Navigation