Skip to main content
Log in

A continuum model for granular materials: Considering dilatancy and the Mohr-Coulomb criterion

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In this paper we will explore the consequences of the Mohr-Coulomb criterion on the constitutive equation proposed by Rajagopal and Massoudi [1]. This contunuum model which is based on the earlier works of Cowin [2] has also the ability to predict the dilatancy effect which is related to the normal stress effects. At the same time, if a proper representation is given to some of the material parameters, this model would also comply with the Mohr-Coulomb criterion. We also present, as a special case, an exact solution for the case of simple shear flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rajagopal, K. R., Massoudi, M.: A method for measuring the material moduli of granular materials: Flow in an orthogonal rheometer. Topical report, U. S. Department of Energy, DOE/PETC/TR-90/3 (1990).

  2. Cowin, S. C.: Constitutive relations that imply a generalized Mohr-Coulomb criterion. Acta Mech.20, 41–46 (1974).

    Google Scholar 

  3. Savage, S. B.: The mechanics of rapid granular flows. Adv. Appl. Mech.24, 289–366 (1984).

    Google Scholar 

  4. Wieghardt, K.: Experiments in granular flow. Annual Rev. Fluid Mech.7, 89–114 (1975).

    Google Scholar 

  5. Davies, T. R. H.: Large debris flows: A macro-viscous phenomenon. Acta Mec63, 161–178 (1986).

    Google Scholar 

  6. Takahashi, T.: Debris flow. Annual Rev. Fluid Mech.13, 57–77 (1981).

    Google Scholar 

  7. Hutter, K., Svendsen, B., Rickermann, D.: Debris flow modelling: A review. Continuum Mech. Thermodyn.8, 1–35 (1996).

    Google Scholar 

  8. Rajchenbach, J.: Flow in powders: From discrete avalanches to continuum regime. Phys. Rev. Letters.65, 2221–2224 (1990).

    Google Scholar 

  9. Savage, S. B., Hutter, K.: The dynamics of avalanches of granular materials from initiation to runout, Part I: Analysis. Acta Mech.86, 201–223 (1991).

    Google Scholar 

  10. Jenike, A. W.: Steady gravity flow of frictional-cohesive solids in converging channels. J. Appl. Mech.31, 5–11 (1964).

    Google Scholar 

  11. Jenkins, J. T., Cowin, S. C.: Theories for flowing granular materials. Adv. Appl. Mech. Div. ASME31, 79–89 (1979).

    Google Scholar 

  12. Nedderman, R. M., Tüzün, U., Savage, S. B., Houlsby, G. T.: The flow of granular materials-I: Discharge rates from hoppers. Chem. Eng. Sci.37, 1597–1609 (1982).

    Google Scholar 

  13. Brown, R. L., Richards, J. C.: Principles of powder mechanics. London: Pergamon Press 1970.

    Google Scholar 

  14. Hermann, H. J., Luding, S.: Modelling of granular media in the computer. Continuum Mech. Thermodyn.10, 189–231 (1998).

    Google Scholar 

  15. Behringer, R. P., Howell, D., Kondic, L., Tennakoon, S., Veje, C.: Predictability and granular materials. Physica D133, 1–17 (1999).

    Google Scholar 

  16. Bagnold, R. A.: Experiments on a Gravity-Free Dispersion of Large Solid Spheres in a Newtonian Fluid Under Shear. Proc. Roy. Soc. Lond.A 225, 49–63 (1954).

    Google Scholar 

  17. Bagnold, R. A.: The Shearing and Dilatation of Dry Sand and the “Singing” Mechanism. Proc. Roy. Soc. Lond.A 295 219–232 (1966).

    Google Scholar 

  18. Reiner, M.: A mathematical theory of dilatancy. American J. Math.67, 350–362 (1945).

    Google Scholar 

  19. McTigue, D. F.: A Nonlinear Constitutive Model for Granular Materials: Application to Gravity Flow. J. App. Mech.49, 291–296 (1982).

    Google Scholar 

  20. Savage, S. B.: Gravity Flow of Cohesionless Granular Materials in Chutes and Channels. J. Fluid Mech.92, 53–96 (1979).

    Google Scholar 

  21. Goddard, J. D.: Dissipative Materials as Models of Thixotropy and Plasticity. J. Non-Newtonian Fluid Mech.14, 141–160 (1984).

    Google Scholar 

  22. Goddard, J. D.: Dissipative Materials as Constitutive Models for Granular Media. Acta Mech.63, 3–13 (1986).

    Google Scholar 

  23. Astarita, T., Ocone, R.: Unsteady compressible flow of granular materials. Ind. Eng. Chem. Res.38, 1177–1182 (1999).

    Google Scholar 

  24. Elaskar, S. A., Godoy, L. A.: Constitutive relations for compressible granular materials using non-Newtonian fluid mechanics. Int. J. Mech. Sci.40, 1001–1018 (1998).

    Google Scholar 

  25. Haff, P. K.: Grain Flow as a Fluid-Mechanical Phenomenon. J. Fluid Mech.134, 401–430 (1983).

    Google Scholar 

  26. Tardos, G. I.: A fluid mechanistic approach to slow, frictional flow of powder. Powder Tech.92, 61–74 (1997).

    Google Scholar 

  27. Ivsic, T., Galovic, A., Kirin, D.: Sand as a compressible fluid. Physica A277, 47–61 (2000).

    Google Scholar 

  28. Gudehus, G.: Granular materials as rate-independent simple materials: Constitutive relationa. Powder Tech.3, 344–351 (1969/70).

    Google Scholar 

  29. Drucker, D. C., Prager, W.: Soil mechanics and plastic analysis or limit design. Quart. Appl. Math.10, 157–165 (1952).

    Google Scholar 

  30. Maddalena, F.; Ferrari, M.: Viscoelasticity of granular materials. Mech. Mater20, 241–250 (1995)

    Google Scholar 

  31. Wu, W., Bauer, E., Kolymbas, D.: Hypoplastic constitutive model with critical state for granular materials. Mech. Mater.23, 45–69 (1996).

    Google Scholar 

  32. Kanatani, K. I.: A micropolar continuum theory for the flow of granular materials. Int. J. Engng. Sci.17, 419–432 (1979).

    Google Scholar 

  33. Satake, M.: Consideration on the stress-dilatancy equation through the work increment tensor. In Micromechanics of Granular Materials. (M. Satake and J. T. Jenkins, eds.). Elsevier 1988.

  34. Christoffersen, J., Mehrabadi, M. M., Nemat-Nasser, S.: A micromechanical desription of granular material behavior. ASME J. Appl. Mech.48, 339–344 (1981).

    Google Scholar 

  35. Bagi, K.: Stress and strain in granular materials. Mech. Materials22, 165–177 (1996).

    Google Scholar 

  36. Ogawa, S.: Multitemperature theory of granular materials., pp. 208–217, In: Proc. U.S.-Japan Seminar on Continuum Mechanical and Statistical Approaches in the Mechanics of Granular Materials, (Cowin, S. C. and M. Satake, eds.) 1978.

  37. Ogawa, S., Umemura, A., Oshima, N.: On the equations of fully fluidized granular materials. ZAMP31, 483–493 (1980).

    Google Scholar 

  38. Blinowski, A.: On the dynamic flow of granular media. Arch. Mech.30, 27–34 (1978).

    Google Scholar 

  39. Massoudi, M., Ahmadi, G.: Rapid flows of granular materials with density and fluctuation energy gradients. Int. J. Non-Linear Mech.29, 487–492 (1994).

    Google Scholar 

  40. Goodman, M. A., Cowin, S. C.: Two problems in the gravity flow of granular materials. J. Fluid Mech.45, 321–339 (1971).

    Google Scholar 

  41. Goodman, M. A., Cowin, S. C.: A continuum theory for granular materials. Arch. Rational Mech. Anal.44, 249–266 (1972).

    Google Scholar 

  42. Ahmadi, G.: A generalized continuum theory for granular materials. Int. J. Non-Linear Mech17, 21–33 (1982).

    Google Scholar 

  43. Nunziato, J. W., Passman, S. L., Thomas, J. P. Jr.: Gravitational flows of granular materials with incompressible grains. J. Rheology24, 395–420 (1980).

    Google Scholar 

  44. Rajagopal, K. R., Massoudi, M., Wineman, A. S.: Flow of granular materials between rotating disks. Mech. Research Comm.21, 629–634 (1994).

    Google Scholar 

  45. Cowin, S. C.: A Theory for the flow of granular materials. Powder Tech.9, 61–69 (1974).

    Google Scholar 

  46. Hutter, K., Rajagopal, K. R.: On flows of granular materials. Continuum Mech. Thermodyn.6, 81–139 (1994).

    Google Scholar 

  47. Jaeger, H. M., Nagel, S. R., Behringer, R. P.: Granular solids, liquids, and gases. Rev. Modern Phys.68, 1259–1273 (1996).

    Google Scholar 

  48. de Gennes, P. G.: Reflections on the mechanics of granular materials. Physica A261, 267–293 (1998).

    Google Scholar 

  49. Mehta, M. (ed.): Granular matter: An interdisciplinary approach. New York: Springer 1994.

    Google Scholar 

  50. Mandl, G., Fernandez Luque, R.: Fully developed plastic shear flow of granular materials. Geotech.20, 277–307 (1970).

    Google Scholar 

  51. Terzaghi, K.: Theoretical soil mechanics. New York: Wiley 1943.

    Google Scholar 

  52. Wood, P. A.: Fundamentals of bulk solids flow. IEA Coal Research, London, Report No. ICTIS/TR31, 1986.

    Google Scholar 

  53. Nutting, P. G.: The deformation of granular solids. J. Washington Acad. of Sci.18, 123–126 (1929).

    Google Scholar 

  54. Gudehus, G.: A comprehensive constitutive equation for granular materials. Soils and Foundations36, 1–12 (1996).

    Google Scholar 

  55. Taylor, D. W.: Fundamentals of soil mechanics. New York: Wiley 1948.

    Google Scholar 

  56. Sheild, R. T.: On coulomb's law of failure in soils. J. Mech. Phys. Soilds.4, 10–16 (1955).

    Google Scholar 

  57. Sokolovskii, V. V.: Statics of granular media. Oxford: Pergamon 1965.

    Google Scholar 

  58. Nedderman, R. M.: Statics and kinematics of granular materials. Cambridge: Cambridge University Press 1992.

    Google Scholar 

  59. Reynolds, O.: On the dilatancy of media composed of rigid particles in contact with experimental illustrations. Phil. Mag. S. 520, 469–481 (1885).

    Google Scholar 

  60. Reynolds, O.: Experiments showing dilatancy. A property of granular material, possibly connected with gravitation. Proc. Royal. Inst. of Great Britain.11, 354–363 (1886).

    Google Scholar 

  61. Jenkin, C. F.: The pressure exerted by granular materials: an application of the principle of dilatancy. Proc. Royal Soc. Lond. A131, 53–89 (1931).

    Google Scholar 

  62. Rowe, P. W.: The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. Royal Soc. Lond. A.269, 500–527 (1962).

    Google Scholar 

  63. Andrade, E. N. D. C., Fox, J. W.: The mechanism of dilatancy. Proc. Phys. Soc. Lond.B 62, 483–500 (1949).

    Google Scholar 

  64. Reiner, M.: Rheology. In: Handbuch der Physik. (S. Flügge, ed.). Berlin: Springer 1958.

    Google Scholar 

  65. Bolton, M. D.: The strength and dilatancy of sand. Geotech.36, 65–78 (1986).

    Google Scholar 

  66. Nixon, S. A., Chandler, H. W.: On the elasticity and plasticity of dilatant granular materials. J. Mech. Phys. Solids.47, 1397–1408 (1999).

    Google Scholar 

  67. Mehrabadi, M. M., Loret, B., Nemat-Nasser, S.: Incremental constitutive relations for granular materials based on micromechanics. Proc. R. Soc. Lond. A44, 433–463 (1993).

    Google Scholar 

  68. Goddard, J. D., Bashir, Y. M.: On Reynolds dilatancy. In: Recent developments in structured continua, Vol. II. (D. De Kee and P. N. Kaloni, eds.). New York: Longman Scientific and Technical 1990.

    Google Scholar 

  69. Goddard, J. D.: Granular dilatancy and the plasticity of glassy lubricant. Ind. Eng. Chem. Res.38, 820–822 (1999).

    Google Scholar 

  70. Truesdell, C., Noll, W.: The nonlinear field theories of mechanics. New York: Springer 1992.

    Google Scholar 

  71. Serrin, J.: The derivation of stress-deformation relations for a Stokesian fluid. J. Math. Mech.8, 459–469 (1959).

    Google Scholar 

  72. Rivlin, R. S.: The hydrodynamics of non-Newtonian fluids. I. Proc. Royal Soc. Lond. A193, 260–281 (1948).

    Google Scholar 

  73. Walton, O. R., Braun, R. L.: Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. J. Rheol.30, 949–980 (1986).

    Google Scholar 

  74. Walton, O. R., Braun, R. L.: Stress calculations for assemblies of inelastic spheres in unifrom shear. Acta Mech.63, 73–86 (1986).

    Google Scholar 

  75. Jenkins, J. T., Savage, S. B.: A theory for the rapid flow of identical, smooth, nearly elastic spherical particles. J. Fluid Mech.130, 187–202 (1983).

    Google Scholar 

  76. Passman, S. L., Nunziato, J. W., Bailey, P. B.: Shearing motion of a fluid-saturated granular materia. J. Rheol.30, 167–192 (1980).

    Google Scholar 

  77. Jackson, R.: Some features of the flow of granular materials and aerated granular materials. J. Rheol.30, 907–930 (1986).

    Google Scholar 

  78. Jackson, R.: The flow of granular materials and aerated granular materials. In: Adv. in multiphase flow and related problems. (G. Papanicolaou, ed.), pp. 81–100 (1986).

  79. Boyle, E. J., Massoudi, M.: A theory for granular materials exhibiting normal stress effects based on Enskog's dense gas theory. Int. J. Engng. Sci.28, 1261–1271 (1990).

    Google Scholar 

  80. Jyotsna, R., Kesava Rao, K.: A frictional-kinetic model for the flow of granular materials through a wedge-shaped hopper. J. Fluid Mech.346, 239–270 (1997).

    Google Scholar 

  81. Davidson, J. F., Clift, R., Harrison, D. (eds.): Fluidization, 2nd ed. Orlando: Academic Press 1985.

    Google Scholar 

  82. Johnson, G., Massoudi, M., Rajagopal, K. R.: Flow of a fluid-solid mixture between flat plates. Chem. Engng. Sci.46, 1713–1723 (1991).

    Google Scholar 

  83. Massoudi, M., Rajagopal, K. R., Phuoc, T. X.: On the fully developed flow of a dense particulate mixture in a pipe. Powder Tech.104, 258–268 (1999).

    Google Scholar 

  84. Rajogopal, K. R., Troy, W., Massoudi, M.: Existence of solutions to the equations governing the flow of granular materials. Eur. J. Mech., B/Fluids.11, 265–276 (1992).

    Google Scholar 

  85. Ericksen, J. L.: Anisotropic fluids. Arch. Rat. Mech. Anal.4, 231–237 (1999).

    Google Scholar 

  86. Ericksen, J. L.: Equilibrium theory of liquid crystals. Adv. Liquid Crystals2, 233–298 (1976).

    Google Scholar 

  87. Leslie, F. M.: Some constitutive equations for anisotropic fluids. Quart. J. Mech. Appl. Math.19, 357–370 (1966).

    Google Scholar 

  88. Hand, G. L.: A theory of anisotropic fluids. J. Fluid Mech.13, 33–46 (1962).

    Google Scholar 

  89. Eringen, A. C.: Theory of micropolar fluids. J. Math. Mech.16, 1–18 (1966).

    Google Scholar 

  90. Dunn, J. E., Serrin, J.: On the thermomechanics of interstitial working. Arch. Rational Mech. Anal.88, 95–133 (1985).

    Google Scholar 

  91. Spencer, A. J. M.: Theory of invariants. In: Continuum physics, Vol I (A. C. Eringen, ed.). New York: Academic Press 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massoudi, M., Mehrabadi, M.M. A continuum model for granular materials: Considering dilatancy and the Mohr-Coulomb criterion. Acta Mechanica 152, 121–138 (2001). https://doi.org/10.1007/BF01176949

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01176949

Keywords

Navigation