Skip to main content
Log in

Evolution of neuromagnetic topographic mapping

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

Magnetoencephalography has developed during the past twenty years with a different overall emphasis than found in electroencephalography. These differences are explored in selected applications. One dominant feature of magnetic studies is a quantitative approach to characterize the strength of neuronal activity, as well as its position within the brain. There is evidence from recent analyses of current source-density measurements in animal models that the deduced peak neuronal strength can also be interpreted in terms of the spatial extent of activity across cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ary, J.P., Klein, S.A. and Fender, D.H. Location of sources of evoked scalp potentials: corrections for skull and scalp thicknesses. IEEE Trans. Biomed. Eng., 1981, BME-28: 447–452.

    Google Scholar 

  • Bak, C., Kofoed, B., Lebech, J., Saermark, K. and Elberling, C. Auditory evoked magnetic fields from the human brain. Source localization in a single-dipole approximation. Physics Letters, 1981, 82A: 57–60.

    Google Scholar 

  • Barth, D. and Sutherling W. Current source-density and neuromagnetic analysis of the direct cortical response in rat cortex. Brain Res., 1988, 450: 280–294.

    PubMed  Google Scholar 

  • Brazier, M.A.B. A study of the electrical fields at the surface of the head. Electroenceph. Clin. Neurophysiol., 1949, Suppl. 2: 38–52.

    Google Scholar 

  • Brenner, D., Williamson, S.J. and Kaufman, L. Visually evoked fields of the human brain. Science, 1975, 190: 480–482.

    PubMed  Google Scholar 

  • Brenner, D., Lipton, J., Kaufman, L. and Williamson, S.J. Somatically evoked magnetic fields of the human brain. Science, 1978, 199: 81–83.

    Google Scholar 

  • Cauller, L.J. and Kulics, A.T. The neural basis of the behaviorally revelvant N1 component of the somatosensory-evoked potential in SI cortex of awaked monkeys: evidence that backward cortical projections signal conscious touch sensation. Exp. Brain Res., 1990, submitted.

  • Chapman, R.M., Ilmoniemi, R.J., Barbanera, S. and Romani, G.L. Selective localization of alpha brain activity with neuromagnetic measurements. Electroenceph. Clin. Neurophysiol., 1984, 58: 569–572.

    PubMed  Google Scholar 

  • Cuffin, B.N. and Cohen, D. Magnetic fields of a dipole in special volume conductor shapes. IEEE Trans. Biomed. Eng., 1977, BME-24: 372–381.

    Google Scholar 

  • Curtis, S., Kaufman, L. and Williamson, S.J. Divided attention revisited: selection based on location or pitch. In: Atsumi, K., Kotani, M., Ueno, S., Katila, T. and Williamson, S.J. (Eds.), Biomagnetism '87. Tokyo Denki University Press, Tokyo, 1988: 138–141.

    Google Scholar 

  • Desmedt, J.E. Somatosensory cerebral evoked potentials in man. In: Rémond, A. (Ed.) Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 9, Elsevier, Amsterdam, 1971: 55–82.

    Google Scholar 

  • Desmedt, J.E. and Tomberg, C. Mapping early somatosensory evoked potentials in selective attention: critical evaluation of control conditions used for titrating by difference the cognitive P30, P40, P100, and N140. Electroenceph. Clin. Neurophysiol., 1989, 74: 321–346.

    Google Scholar 

  • Duffy, F.H., Burchfiel, J.L. and Lombroso, C.T. Brain electrical activity mapping (BEAM): A new method for extending the clinical utility of EEG and evoked potential data. Ann. Neurol., 1979, 5: 309–321.

    PubMed  Google Scholar 

  • Farrell, D.E., Tripp, J.H., Norgren, R. and Teyler, T.J. A study of the auditory evoked field of the human brain. Electroenceph. Clin. Neurophysiol., 1980, 49: 31–37.

    PubMed  Google Scholar 

  • Freeman, J.A. and Nicholson, C. Experimental optimization of current source-density technique for anuran cerebellum. J. Neurophysiol., 1975, 38: 369–382.

    PubMed  Google Scholar 

  • Gevins, A.S., Morgan, N.H., Bressler, S.L., Cutillo, B.A., White, R.M., Illes, J., Greer, D.S., Doyle, J.C. and Zeitlin, G.M. Human neuroelectric patterns predict performance accuracy. Science 1987, 235: 580–585.

    PubMed  Google Scholar 

  • Goff, W.R., Willmson, P.D., Van Gilder, J.C., Allison, T. and Fisher, T.C. Neural origins of long latency evoked potentials recorded from the depth and cortical surface of the brain in man. In: Desmedt, J.E. (Ed.), Progress in Clinical Neurophysiology, Karger, Basel, 1980: 126–145.

    Google Scholar 

  • Hari, R., Aittoniemi, K., Järvinen, M.-L., Katila, T. and Varpula, T. Auditory evoked transient and sustained magnetic fields of the human brain. Exp. Brain Res., 1980, 40: 237–240.

    PubMed  Google Scholar 

  • Hari, R. and Ilmoniemi, R.J. Cerebral magnetic fields. CRC Critical Rev. in Biomed. Eng., 1986, 14: 93–126.

    Google Scholar 

  • Hari, R. Activation of the human auditory cortex by various sound sequences. In: Williamson, S.J., Hoke, M., Stroink, G. and Kotani, M. (Eds.), Advances in Biomagnetism, Plenum, New York, 1990: 87–92.

    Google Scholar 

  • Hughes, J.R., Hendrix, D.E., Cohen, D., Duffy, F.H., Mayman, C.I., Scholl, M.L. and Cuffin, B.N. Relationship of the magnetoencephalogram to the electroencephalogram. Normal wake and sleep activity. Electroenceph. Clin. Neurophysiol., 1976, 40: 261–278.

    PubMed  Google Scholar 

  • Hughes, J.R., Cohen, D., Mayman, C.I., Scholl, M.L. and Hendrix, D.E. Relationship of the magnetoencephalogram to abnormal activity in the electroencephalogram. J. Neurol., 1977, 217, 79–93.

    PubMed  Google Scholar 

  • Ilmoniemi, R.J., Williamson, S.J. and Hostetler, W.E. New method for the study of spontaneous brain activity. In: Atsumi, K. Kotani, M. Ueno, S. Katila T. and Williamson, S.J. (Eds.), Biomagnetism '87. Tokyo Denki University Press, Tokyo, 1988: 182–185.

    Google Scholar 

  • John, E.R., Karmel, B.Z., Corning, W.C., Easton, P., Brown, D., Ahn, H., John, M., Harmony, T., Prichep, L., Toro, A., Gerson, I., Bartlett, F., Thatcher, R., Kaye, H., Valdes, P. and Schwartz, E., Neurometrics. Science, 1977, 196: 1393–1410.

    PubMed  Google Scholar 

  • Kaufman, L., Okada, Y., Brenner, D. and Williamson, S.J. On the relations between somatically evoked potentials and fields. Intl. J. Neuroscience, 1981, 15: 223–239.

    Google Scholar 

  • Kaufman, L., Schwartz, B., Salustri, C. and Williamson, S.J. Modulation of spontaneous brain activity during mental imagery. J. Cognitive Neurosci., 1990a, 2:124–132.

    Google Scholar 

  • Kaufman, L., Cycowicz, Y. and Williamson, S.J. Differences in alpha suppression by visualizing and rhyming. In: Williamson, S.J., Hoke, M., Stroink, G. and Kotani, M. (Eds.), Advances in Biomagnetism, Plenum, New York, 1990: 241–244.

    Google Scholar 

  • Kavanagh, R.N., Darcey, T.M., Lehmann, D. and Fender, D.H. Evaluation of methods for three-dimensional localization of electrical sources in the human brain. IEEE Trans. Biomed. Engin., 1978, 25: 421–429.

    Google Scholar 

  • Klimesch, W., Pfurtscheller, G. and Mohl, W. Mapping and long-term memory: The temporal and topographical pattern of cortical activation. In: Pfurtscheller, G. and Lopes da Silva, F.H. (Eds.), Functional Brain Imaging, Hans Huber, Toronto, 1988: 131–142.

    Google Scholar 

  • Lehmann, D. Spatial analysis of EEG and evoked potential data. In: F.H. Duffy (Ed.), Topographic Mapping of Brain Electrical Activity. Butterworths, Boston, MA, 1986: 29–61.

    Google Scholar 

  • Lopes da Silva, F.H. and Storm van Leeuwen, W. The cortical alpha rhythm in dog: The depth and surface profile of phase. In: Brazier, M.A.B. and Petsche, H. (Eds.), Architectonics of the Cerebral Cortex, Raven, New York, 1978: 319–333.

    Google Scholar 

  • Lü, Z. and Williamson, S.J., Spatial extent of coherent sensoryevoked cortical activity, Exp. Brain Res., in press.

  • Mitzdorf, U. Properties of the evoked potential generators: current source density analysis of visually evoked potentials in the cat cortex. J. Neurosci., 1987, 33: 33–59.

    Google Scholar 

  • Narici, L., Iori, G., Modena, I., Romani, G.L., Torrioli, G., Traversa, R. and Rossini, P.M. Neuromagnetic imaging of synchronized mu activity. In: Williamson, S.J. Hoke, M. Stroink, G. and Kotani, M. (Eds.), Advances in Biomagnetism, Plenum, New York, 1990: 261–264.

    Google Scholar 

  • Nicholson, C. and Freeman, J.A. Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. J. Neurophysiol. 1975, 38: 356–368.

    PubMed  Google Scholar 

  • Nunez, P.L. Electric Fields of the Brain. Oxford, New York, 1981.

  • Okada, Y. Somatically evoked magnetic field. In: Williamson, S.J. Romani, G.L. Kaufman, L. and Modena, I. (Eds.), Biomagnetism: An Interdisciplinary Approach, Plenum, New York, 1983: 409–421.

    Google Scholar 

  • Okada, Y. Discrimination of localized and extended current dipole sources and localized single and multiple sources. In: Weinberg, H., Stroink, G., Katila, T. (Eds.), Biomagnetism: Applications and Theory. Pergamon Press, New York, 1985: 266–272.

    Google Scholar 

  • Pantev, C., Hoke, M., Lehnertz, K., Lütkenhöner, B., Anogianakis, G. and Wittkowski, W. Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroenceph. Clin. Neurophysiol., 1988a, 69: 160–170.

    PubMed  Google Scholar 

  • Pantev, C., Hoke, M., Lütkenhöner, B. and Lehnertz, K. Influence of stimulus intensity on the location of the equivalent current dipole in the human auditory cortex. In: Atsumi, K., Kotani, M., Ueno, S., Katila, T., and Williamson, S.J. (Eds.), Biomagnetism '87. Tokyo Denki University Press, Tokyo, 1988b: 146–149.

    Google Scholar 

  • Pfurtscheller, G. and Aranabar, A. Event-related cortical desynchronization detected by power measurements of scalp EEG. Electroenceph. Clin. Neurophysiol., 1977, 42: 817–826.

    PubMed  Google Scholar 

  • Rémond, A. The importance of topographic data in EEG phenomena, and an electrical model to reproduce them. Electroenceph. Clin. Neurophysiol. 1968, suppl 27: 29–49.

    Google Scholar 

  • Rockel, A.J., Hiorns, R.W. and Powell, T.P.S. The basic uniformity in structure of the neocortex. Brain, 1980, 103: 221–244.

    PubMed  Google Scholar 

  • Roland, P.E. and Frieberg, L. Localization of cortical areas activated by thinking. J. Neurophysiol., 1985, 53: 1219–1243.

    PubMed  Google Scholar 

  • Romani, G.L., Williamson, S.J. and Kaufman, L. Tonotopic organization of the human auditory cortex. Science, 1982a, 216: 1339–1340.

    PubMed  Google Scholar 

  • Romani, G.L., Williamson, S.J., Kaufman, L. and Brenner, D. Characterization of the human auditory cortex by the neuromagnetic method. Exp. Brain Res., 1982b, 47: 381–393.

    PubMed  Google Scholar 

  • Scherg, M. and Von Cramon, D. A new interpretation of the generators of BAEP waves I-V: Results of a spatio-temporal dipole model.

  • Shepard, R.N. and Metzler, J. Mental rotation of three-dimensional objects. Science, 1971, 171: 701–703.

    PubMed  Google Scholar 

  • Shepard, R.N. and Cooper, L.A. Mental Images and their Transformations. MIT Press, Cambridge, MA, 1982.

    Google Scholar 

  • Slatter, K.H. Alpha rhythms and mental imagery. Electroenceph. Clin. Neurophysiol., 1960, 12: 851–859.

    Google Scholar 

  • Steriade, M. Mechanisms underlying cortical activation: Neuronal organization and properties of the midbrain reticular core and intralaminar thalamic nuclei. In: Pompeiano, O. and Ajmone-Marsan, C. (Eds.), Mechanisms of Perceptual Awareness and Purposeful Behavior, Raven, New York, 1981: 327–377.

    Google Scholar 

  • Sternberg, S. High speed scanning in human memory. Science, 1966, 153: 652–654.

    PubMed  Google Scholar 

  • Vaughan, H.G. Jr. and Ritter, W. The sources of auditory evoked responses recorded from the human scalp. Electroenceph. Clin. Neurophysiol., 1970, 28: 360–367.

    PubMed  Google Scholar 

  • Vvedensky, V., Gurtovoy, K.G., Ilmoniemi, R.J. and Kajola, M. Determination of sources of the human alpha rhythm (in Russian). Fisiologija tseloveka, 1987, 13: 934–939.

    Google Scholar 

  • Williamson, S.J., Kaufman, L. and Brenner, D. Evoked neuromagnetic fields of the human brain. J. Appl Phys. 1979, 50: 2418–2421.

    Google Scholar 

  • Williamson, S.J. and Kaufman, L. Evoked cortical magnetic fields. In: Erné, S.N., Hahlbohm, H.-D. and Lübbig, H. (Eds.), Biomagnetism, 1981: 353–402.

  • Williamson, S.J. and Kaufman, L. Analysis of neuromagnetic signals. In: A. Gevins and A. Rémond (Eds.), Handbook of Electroencephalography and Clinical Neurophysiology. Volume 1 Revised, Methods and Analysis of Brain Electrical and Magnetic Signals. Elsevier, Amsterdam, 1987: 405–448.

    Google Scholar 

  • Williamson, S.J., Hoke, M., Stroink, G. and Kotani, M. (Eds.). Advances in Biomagnetism. Plenum, New York, N.Y., 1989.

    Google Scholar 

  • Williamson, S.J. and Kaufman, L. Advances in neuromagnetic instrumentation and studies of spontaneous brain activity. Brain Topography, 1990, 2: 124–132.

    Google Scholar 

  • Wilson, F.N. and Bayley, R.H. The electric field of an eccentric dipole in a homogeneous spherical conducting medium. Circulation, 1950, 1: 84–92.

    PubMed  Google Scholar 

  • Wood, C.C., Cohen, C., Cuffin, B.N., Yarita, M. and Allison, T. Electrical sources in human somatosensory cortex: Identification of combined magnetic and potential recordings. Science, 1985, 227: 1051–1053.

    PubMed  Google Scholar 

  • Yamamoto, T., Williamson, S.J., Kaufman, L., Nicholson, C. and Llinás, R., Magnetic localization of neuronal activity in human brain. Proc. Natl. Acad. Sci. USA, 1988, 85: 8732–8736.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Acknowledgements: We thank Zhonglin Lü and Drs. Barry Schwartz, Carlo Salustri, and Jia-Zhu Wang for helpful discussions. This work was supported in part by Air Force Office of Scientific Research grants F49620-88-K-0004 and F49620-88-C-0131.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, S.J., Kaufman, L. Evolution of neuromagnetic topographic mapping. Brain Topogr 3, 113–127 (1990). https://doi.org/10.1007/BF01128868

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01128868

Key words

Navigation