Skip to main content
Log in

Ab initio calculation of electronic circular dichroism fortrans-cyclooctene using London atomic orbitals

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

The second-quantization magnetic dipole operator that arises when London atomic orbitals are used as basis functions is derived. In atomic units, the magnetic dipole operator is defined as the negative of the first derivative of the electronic Hamiltonian containing the interaction with the external magnetic field. It is shown that for finite basis sets, the gauge origin dependence of the resulting magnetic dipole operator is analogous to that of the exact operator, and that the derived operator converges to the exact operator in the limit of a complete basis set. It is also demonstrated that the length expression for the rotatory strength in linear response calculations gives gauge-origin-independent results. Sample calculations ontrans-cyclooctene and its fragments are presented. Compared to conventional orbitals, the basis set convergence of the rotatory strengths calculated in the length form using London atomic orbitals is favourable. The rotatory strength calculated fortrans-cyclooctene agrees nicely with the corresponding experimental circular dichroism spectrum, but the spectra for the fragment molecules show little resemblance with that oftrans-cyclooctene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hansen AaE, Bouman TD (1980) Adv Chem Phys 44:545

    Google Scholar 

  2. London F (1937) J Phys Radium 8:397

    Google Scholar 

  3. Hameka HF (1958) Mol Phys 1:203

    Google Scholar 

  4. Hameka HF (1959) Z Naturforsch 14a:599

    Google Scholar 

  5. Mc Weeny R (1958) Mol Phys 1:311

    Google Scholar 

  6. Seamans L, Linderberg J (1972) Mol Phys 24:1393

    Google Scholar 

  7. Dalgaard E (1978) Proc R Soc Lond A 361:487

    Google Scholar 

  8. Ditchfield R (1972) J Chem Phys 56:5688

    Google Scholar 

  9. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251

    Google Scholar 

  10. Gauss J (1992) Chem Phys Lett 191:614

    Google Scholar 

  11. Ruud K, Helgaker T, Kobayashi R, Jørgensen P, aiBak KL, Jensen HJAa (1994) J Chem Phys 100:8178

    Google Scholar 

  12. Ruud K, Helgaker T, Bak KL, Jørgensen P, Jensen HJAa (1993) J Chem Phys 99:3847

    Google Scholar 

  13. Ruud K, Skaane H, Helgaker T, Bak KL, Jørgensen P (1994) J Am Chem Soc

  14. Bak KL, Jørgensen P, Helgaker T, Ruud K, Jensen HJAa (1993) J Chem Phys 98:8873

    Google Scholar 

  15. Bak KL, Jørgensen P, Helgaker T, Ruud K Jensen HJAa (1994) J Chem Phys 100:6620

    Google Scholar 

  16. McLachlan AD, Ball MA (1964) Rev Mod Phys 36:844

    Google Scholar 

  17. Linderberg J, Öhrn Y (1973) Propagators in quantum chemistry. Academic Press, New York

    Google Scholar 

  18. Olsen J, Jørgensen P (1985) J Chem Phys 82:3235

    Google Scholar 

  19. Olsen J, Bak KL, Helgaker T, Ruud K, Jørgensen P, Theoret Chem Acta submitted

  20. Mason MG, Schnepp O (1973) J Chem Phys 59:1092

    Google Scholar 

  21. Levi CC, Hoffmann R (1972) J Am Chem Soc 94:3446

    Google Scholar 

  22. Hansen AaE, Bouman TD (1985) J Am Chem Soc 107:4828

    Google Scholar 

  23. Helgaker T, Jørgensen P (1991) J Chem Phys 95:2595

    Google Scholar 

  24. Yeager DL, Jørgensen P (1979) Chem Phys Lett 65:77

    Google Scholar 

  25. Koch H, Helgaker T, Jørgensen P (1990) J Chem Phys 93:3345.

    Google Scholar 

  26. Helgaker T, Bak KL, Jensen HJAa, Jørgensen P, Kobayashi R, Koch H, Mikkelsen K, Olsen J, Ruud K, Taylor PR, Vahtras O, ABACUS, a second-order MCSCF molecular property program

  27. Jensen HJAa, Ågren H, SIRIUS, a program for calculation for MCSCF wave functions

  28. Rauk A, Barriel JM, Ziegler T (1977) Prog Theoret Org Chem 2:467

    Google Scholar 

  29. Liskow DH, Segal GA (1978) J Am Chem Soc 100:2945

    Google Scholar 

  30. The dihedral angle H-C1-C2-H in Ref [22], Table 1 is misprinted as 188.9. The correct value is −188.9

  31. Dunning THJr (1989) J Chem Phys 90:1007

    Google Scholar 

  32. Kendall RA, Dunning THJr, Harrison RJ (1992) J Chem Phys 96:6796

    Google Scholar 

  33. Woon DE, Dunning THJr (1993) J Chem Phys 98:1358

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Jan Linderberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bak, K.L., Hansen, A.E., Ruud, K. et al. Ab initio calculation of electronic circular dichroism fortrans-cyclooctene using London atomic orbitals. Theoret. Chim. Acta 90, 441–458 (1995). https://doi.org/10.1007/BF01113546

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113546

Key words

Navigation