Skip to main content
Log in

Angle and bond-length dependent C6 coefficients for H2 interacting with H, Li, Be and rare gas atoms

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

Accurate new C6 dispersion energy coefficients, and their dependence on the diatom orientation and bond length, are calculated for molecular hydrogen interacting with an atom of H, Li, Be, He, Ne, Ar, Kr or Xe. They are generated from accurateab initio pseudo dipole oscillator strength distributions (DOSD) for H2, H, He and Be, and reliable semiempirical ones for Li, Ne, Ar, Kr and Xe. Compact power series expansions for the diatom bond-length dependence of these coefficients, suitable for incorporation into representations of full potential energy surfaces for these systems, are determined and assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. See, e.g., (a) Hirschfelder JO, Curtiss CF, Bird RB (1964) Molecular theory of gases, liquids. Wiley, New York;

    Google Scholar 

  2. Hirschfelder JO, Meath WJ (1967) The nature of intermolecular forces. In: Hirschfelder JO (ed) Adv Chem Phys 12 (Intermolecular Forces), pp 3–106

  3. Maitland GC, Rigby M, Smith EB, Wakeham WA (1981) Intermolecular forces: Their origin, determination. Clarendon Press, Oxford

    Google Scholar 

  4. LeRoy RJ (1974) Can J Phys 52:246;

    Google Scholar 

  5. LeRoy RJ (1980) J Chem Phys 73:6003;

    Google Scholar 

  6. Gerstenkorn S, Luc P, Amiot C (1985) J Phys France 46:355;

    Google Scholar 

  7. Davies MR, Shelley JC, LeRoy RJ (1991) J Chem Phys 94:3479

    Google Scholar 

  8. Zeiss GD, Meath WJ (1977) Mol Phys 33:1155;

    Google Scholar 

  9. Margoliash DJ, Meath WJ (1978) J Chem Phys 68:1246;

    Google Scholar 

  10. Jhanwar BL, Meath WJ (1980) Mol Phys 41:1061;

    Google Scholar 

  11. Meath WJ, Margoliash DL, Jhanwar BL, Kiode A, Zeiss GD (1981) Accurate molecular properties, their additivity, and their use in constructing intermolecular potentials. In Pullman B (ed), Intermolecular Forces (Proceedings of the 14th Jerusalem Symposium on Quantum Chemistry and Biochemistry) pp 101–115

  12. LeRoy RJ, Van Kranendonk J (1974) J Chem Phys 61:4750

    Google Scholar 

  13. McKeller ARW, Welsh HL (1971) J Chem Phys 55:595

    Google Scholar 

  14. Rulis AM, Smith KM, Scoles G (1978) Can J Phys 56:753

    Google Scholar 

  15. LeRoy RJ, Carley JS, Grabenstetter JE, (1977) Faraday Disc Chem Soc 62 (Potential Energy Surfaces):169

    Google Scholar 

  16. Toennies JP, Welz W, Wolf G (1976) J Chem Phys 64:5305

    Google Scholar 

  17. Toennies JP, Welz W, Wolf G (1979) J Chem Phys 71:614

    Google Scholar 

  18. LeRoy RJ, Carley JS (1980) Spectroscopy and potential energy surfaces of Van der Waals molecules. In: Lawley KP (ed) Adv Chem Phys 42 (Potential Energy Surfaces), pp 353–420

    Google Scholar 

  19. Victor GA, Dalgarno A (1970) J Chem Phys 53:1316;

    Google Scholar 

  20. Victor GA, Slavsky DB (1974) J Chem Phys 61:3484

    Google Scholar 

  21. Langhoff PW, Gordon RG, Karplus M (1971) J Chem Phys 55:2126

    Google Scholar 

  22. Meyer W (1976) Chem Phys 17:27

    Google Scholar 

  23. Meyer W, Hariharan PC, Kutzelnigg W (1980) J Chem Phys 73:1880

    Google Scholar 

  24. Thakkar AJ (1977) Chem Phys Lett 46:453

    Google Scholar 

  25. Carley JS (1978) PhD Thesis, University of Waterloo

  26. LeRoy RJ (1984) Chapter 13 in Resonances in Electron-Molecule Scattering, Van der Waals Complexes and Reactive Chemical Dynamics, Truhlar DG (ed), ACS Symposium Series, No 263, American Chemical Society, pp 231–262

  27. Thakkar AJ (1977) unpublished paper presented at the 6th Canadian Symposium on Theoretical Chemistry, Fredericton, New Brunswick

  28. LeRoy RJ, Hutson JM (1987) J Chem Phys 86:837

    Google Scholar 

  29. Tang KT, Toennies JP (1982) J Chem Phys 76:2524

    Google Scholar 

  30. Matías MA, Varandas AJC (1990) Mol Phys 70:623

    Google Scholar 

  31. Varandas AJC, Matías MA (1988) Chem Phys Lett 148:149

    Google Scholar 

  32. Mulder F, van Dijk G, van der Avoird A (1980) Mol Phys 39:407

    Google Scholar 

  33. Dalgarno A (1967) New methods for calculating long-range intermolecular forces, in: Hirschfelder JO (ed) Adv Chem Phys 12 (Intermolecular Forces), pp 143–166

    Google Scholar 

  34. Buckingham AD (1967) Permanent and induced molecular moments and long-range intermolecular forces, in: Hirschfelder JO (ed) Adv Chem Phys 12 (Intermolecular Forces), pp 107–142

    Google Scholar 

  35. Thakkar AJ (1988) J Chem Phys 89:2092

    Google Scholar 

  36. Thakkar AJ (1981) J Chem Phys 75:4496

    Google Scholar 

  37. Oddershede J, Sabin JR (1989) Phys Rev A39:5565

    Google Scholar 

  38. Thakkar AJ (1989) Phys Rev A40:1130

    Google Scholar 

  39. Margoliash DJ, Meath WJ (1978) J Chem Phys 68:1426

    Google Scholar 

  40. Kumar A, Meath WJ (1985) Mol Phys 54:823

    Google Scholar 

  41. Maroulis G, Thakkar AJ (1989) J Phys B22:2439

    Google Scholar 

  42. Taylor PR, Lee TJ, Rice JE, Almlöf J (1989) Chem Phys Lett 163:359;

    Google Scholar 

  43. Maroulis G, Thakkar AJ (1989) Chem Phys Lett 156:87

    Google Scholar 

  44. Cernusak I, Diercksen GHF, Sadlej AJ (1986) Chem Phys Lett 128:18

    Google Scholar 

  45. Maroulis G, Thakkar AJ (1988) J Chem Phys 89:7320

    Google Scholar 

  46. Hu Z-M (1990) MSc Thesis, University of New Brunswick

  47. Hu Z-M, Thakkar AJ (1990) to be published

  48. Luyckx R, Delbaen F, Coulon Ph, Lekkerkerker HNW (1979) Phys Rev A19:324

    Google Scholar 

  49. Langhoff PW (1971) Chem Phys Lett 12:217

    Google Scholar 

  50. Thakkar AJ (1984) J Chem Phys 81:1919

    Google Scholar 

  51. Ogilvie JF (1974) Report on Flexible Potential Energy Functions, Australian National University Research School of Chemistry;

  52. Ogilvie JF (1981) Proc R Soc Lond A378:287;

    Google Scholar 

  53. ibid (1982) A381:479

    Google Scholar 

  54. Schwartz C, LeRoy RJ (1987) J Mol Spectrosc 121:420;

    Google Scholar 

  55. Le Roy RJ, Schwartz C (1987) Univ. of Waterloo Chemical Physics Research Report CP-301R

  56. This choice ofr 0 means that the expectation value of ζ will be identically zero for the ground state of the most common isotope of the diatom [6]

  57. Taylor JR (1982) An introduction to error analysis, University Science Books, Mill Valley, CA

    Google Scholar 

  58. Tellinghuisen J (1989) J Mol Spectrosc 137:248

    Google Scholar 

  59. Cohen ER, Taylor BN (1987) Rev Mod Phys 59:1121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thakkar, A.J., Hu, ZM., Chuaqui, C.E. et al. Angle and bond-length dependent C6 coefficients for H2 interacting with H, Li, Be and rare gas atoms. Theoret. Chim. Acta 82, 57–73 (1992). https://doi.org/10.1007/BF01113130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113130

Key words

Navigation