Skip to main content
Log in

Investigation of sub-Doppler cooling effects in a cesium magneto-optical trap

  • Invited Paper
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present an investigation of sub-Doppler effects in a cesium magneto-optical trap. First, a simple one-dimensional theoretical model of the trap is developed for aJ g = 1 →J e = 2 transition. This model predicts the size of the trapped atom cloud and temperature as a function of laser intensity and detuning. In the limit of small magnetic field gradients, the trap temperature is found to be equal to the molasses temperature and a minimum size for the trap is calculated. We then describe several experiments performed in a three-dimensional cesium trap to measure the trap parameters, spring constant, friction coefficient, temperature and density. Whilst the temperature of the trapped atoms is found to be equal to the molasses temperature, in agreement with theory, the trap spring constant is found to be two orders of magnitude smaller than the one-dimensional prediction, a value close to that predicted by Doppler models. The maximum density is found to be on the order of 1012 atoms/cm3 or one atom per optical wavelength on average. When the number of trapped atoms becomes large, the temperature begins to increase dramatically. This excess temperature depends in a very simple way on the atom number, laser intensity and detuning, suggesting that its origin lies in multiple photon scattering within the trap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Arimondo, W. Phillips, F. Strumia (eds.):Laser Manipulation of Atoms, Proc. Int'l School of Physics Enrico Fermi (North-Holland, Amsterdam 1992)

    Google Scholar 

  2. C. Monroe, W. Swann, H. Robinson, C. Wieman: Phys. Rev. Lett.65, 1571 (1990)

    Google Scholar 

  3. D. Grison, B. Lounis, C. Salomon, J.Y. Courtois, G. Grynberg: Europhys. Lett.15, 149 (1991)

    Google Scholar 

  4. J. Dalibard: Helsinki workshop on laser manipulation of atoms (1987) (unpublished)

  5. E. Raab, M. Prentiss, A. Cable, S. Chu, D. Pritchard: Phys. Rev. Lett.59, 2631 (1987)

    Google Scholar 

  6. D. Sesko, T. Walker, C. Monroe, A. Gallagher, C. Wieman: Phys. Rev. Lett.63, 961 (1989)

    Google Scholar 

  7. T. Hänsch, A. Schawlow: Opt. Commun.13, 68 (1975)

    Google Scholar 

  8. D.W. Wineland, H. Dehmelt: Bull. Am. Phys. Soc.20, 637 (1975)

    Google Scholar 

  9. D. Sesko, T. Walker, C. Wieman: J. Opt. Soc. Am. B8, 946 (1991)

    Google Scholar 

  10. P. Lett, R. Watts, C. Westbrook, W. Phillips, P. Gould, H. Metcalf: Phys. Rev. Lett.61, 169 (1968)

    Google Scholar 

  11. P.D. Lett, W.D. Phillips, S. Rolston, C. Tanner, R. Watts, C. Westbrook: J. Opt. Soc. Am. B6, 2084 (1989)

    Google Scholar 

  12. J. Dalibard, C. Salomon, A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, C. Cohen-Tannoudji: InAtomic Physics 11, ed. by S. Haroche, J.C. Gay, G. Grynberg (World Scientific, Singapore 1989)

    Google Scholar 

  13. S. Chu, Y. Shevy, D. Weiss, P. Ungar: InAtomic Physics 11, ed. by S. Haroche, J.C. Gay, G. Grynberg (World Scientific, Singapore 1989)

    Google Scholar 

  14. D. Weiss, E. Riis, Y. Shevy, P. Ungar, S. Chu: J. Opt. Soc. Am. B6, 2072 (1989)

    Google Scholar 

  15. J. Dalibard, C. Cohen-Tannoudji: J. Opt. Soc. Am. B6, 2023 (1989)

    Google Scholar 

  16. P.J. Ungar, D.S. Weiss, E. Riis, S. Chu: J. Opt. Soc. Am. B6, 2058 (1989)

    Google Scholar 

  17. C. Salomon, J. Dalibard, W.D. Phillips, A. Clairon, S. Guellati: Europhys. Lett.12, 683 (1990)

    Google Scholar 

  18. A. Steane, C. Foot: Europhys. Lett.14, 231 (1991)

    Google Scholar 

  19. A. Clairon, Ph. Laurent, A. Nadir, M. Drewsen, D. Grison, B. Lounis, C. Salomon: InProc. 6th Eur. Time and Frequency Forum, SP-340 (ESA, Noordwijk 1992) p. 27

    Google Scholar 

  20. P. Kohns, P. Buch, W. Süptitz, C. Csambal, W. Ertmer: Europhys. Lett.22, 517 (1993)

    Google Scholar 

  21. C. Wallace, T. Dinneen, K. Tan, A. Kumarakrishnan, P. Gould, J. Javanainen: J. Opt. Soc. Am.11, 703 (1994)

    Google Scholar 

  22. A. Höpe, D. Haubrich, G. Müller, W. Kaenders, D. Meschede: Europhys. Lett.22, 669 (1993)

    Google Scholar 

  23. B. Lounis, P. Verkerk, J.Y. Courtois, C. Salomon, G. Grynberg: Europhys. Lett.21, 13 (1993)

    Google Scholar 

  24. M. Walhout, J. Dalibard, S. Rolston, W. Phillips: J. Opt. Soc. Am. B9, 1997 (1992)

    Google Scholar 

  25. J. Werner, H. Wallis, W. Ertmer: Opt. Commun.94, 525 (1992)

    Google Scholar 

  26. J. Dalibard, C. Cohen-Tannoudji: J. Phys. B18, 1661 (1985)

    Google Scholar 

  27. K. Berg-Sørensen, E. Bonderup, K. Mølmer, Y. Castin: J. Phys. B25, 4195 (1992)

    Google Scholar 

  28. Y. Castin: Les limites du refroidissement laser dans les mélasses optiques à 1 dimension. Dissertation, Université Paris 6 (1992)

  29. Y. Castin, K. Mølmer: J. Phys. B23, 4101 (1990)

    Google Scholar 

  30. Y. Castin, J. Dalibard, C. Cohen-Tannoudji: InLight-Induced Kinetic Effects on Atoms, Ions and Molecules, ed. by L. Moi, S. Gozzini, C. Gabbanini, E. Arimondo, F. Strumia (ETS Editrice, Pisa 1991) p. 5

    Google Scholar 

  31. A. Steane, M. Chowdhury, C. Foot: J. Opt. Soc. Am. B9, 2142 (1992)

    Google Scholar 

  32. K. Mølmer: Phys. Rev. A,44, 5820 (1991)

    Google Scholar 

  33. K. Mølmer, C. Westbrook: (submitted)

  34. J. Javanainen: Phys. Rev. A46, 5819 (1992)

    Google Scholar 

  35. A. Smith, K. Burnett: J. Opt. Soc. Am. B8, 1592 (1991) P. Julienne, J. Vigué: Phys. Rev. A44, 4464 (1991)

    Google Scholar 

  36. T. Walker, D. Sesko, C. Wieman: Phys. Rev. Lett.64, 408 (1990)

    Google Scholar 

  37. We have also tried to deduce α from measurements of the spatial diffusion coefficientD x (along a given direction) of atoms diffusing in 3Dσ +σ molasses. If one assumes that the force acting on a moving atom is linear in velocity and isotropic, then:D x =k B T/α. Our measurements give α values which are a factor 4–10 smaller than the 3D values of Fig. 9, implying that one or two of the assumptions made above break

  38. P. Verkerk, B. Lounis, C. Salomon, C. Cohen-Tannoudji, J.-Y. Courtois, G. Grynberg: Phys. Rev. Lett.68, 3861 (1992) P. Jessen, C. Gerz, P. Lett, W. Phillips, S. Rolston, R. Spreeuw, C. Westbrook: Phys. Rev. Lett.69, 49 (1992)

    Google Scholar 

  39. A. Hemmerich, C. Zimmerman, T. Hänsch: Europhys. Lett.22, 89 (1993)

    Google Scholar 

  40. G. Grynberg, B. Lounis, P. Verkerk, J.-Y. Courtois, C. Salomon: Phys. Rev. Lett.70, 2249 (1993)

    Google Scholar 

  41. Y. Castin: (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drewsen, M., Laurent, P., Nadir, A. et al. Investigation of sub-Doppler cooling effects in a cesium magneto-optical trap. Appl. Phys. B 59, 283–298 (1994). https://doi.org/10.1007/BF01081396

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01081396

PACS

Navigation