Skip to main content
Log in

The role of protein phosphorylation in the regulation of cyclic nucleotide phosphodiesterases

  • Cellular Regulation by Reversible Phosphorylation
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The cyclic nucleotide phosphodiesterases constitute a complex superfamily of enzymes responsible for catalyzing the hydrolysis of cyclic nucleotides. Regulation of cyclic nucleotide phosphodiesterases is one of the two major mechanisms by which intracellular cyclic nucleotide levels are controlled. In many cases the fluctuations in cyclic nucleotide cAMP-specific, calmodulin-stimulated and cGMP-binding phosphodiesterases have been demonstrated to be substrates for protein kinases. Here we review the evidence that hormonally responsive phosphorylation acts to regulate cyclic nucleotide phosphodiesterases. In particular, the cGMP-inhibited phosphodiesterases, which can be phosphorylated by at least two different protein kinases, are activated as a result of phosphorylation. In contrast, phosphorylation of the calmodulin-stimulated phosphodiesterases, which coincides with, a decreased sensitivity to activation by calmodulin, results in decreased phosphodiesterase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sutherland EW, Rall TW: Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. JBC 232: 1077–1091, 1958

    Google Scholar 

  2. Waldman SA, Murad F: Cyclic GMP synthesis and function. Pharmacological Reviews 39: 163–196, 1987

    PubMed  Google Scholar 

  3. Reeves ML, England PJ: Cardiac phosphodiesterases and the functional effects of selective inhibition. In: JA Beavo, MD Housley (eds) Cyclic nucleotide phosphodiesterases: structure, regulation and drug action. John Wiley & Sons, Ltd., Chichester, 1990, pp 299–316

    Google Scholar 

  4. Sonnenburg WK, Beavo JA: Cyclic GMP and regulation of cyclic nucleotide hydrolysis. In: F Murad (ed.) Cyclic GMP: synthesis, metabolism, and function. Academic Press, San Diego, 1992, in press

    Google Scholar 

  5. Harrison SA, Reifsnyder DH, Gallis B, Cadd GC, Beavo JA: Isolation and characterization of bovine cardiac muscle cGMP-inhibited phosphodiesterase: a receptor for new cardiotonic drugs. Mol Phcol 29: 506–514, 1986

    Google Scholar 

  6. Degerman E, Manganiello VC, Newman AH, Rice KC, Belfrage P: Purification, properties and polyclonal antibodies for the particulate, low Km cAMP phosphodiesterase from bovine adipose tissue. Second Messengers Phosphoproteins 12: 171–182, 1988

    PubMed  Google Scholar 

  7. Degerman E, Belfrage P, Newman AH, Rice KC, Manganiello VC: Purification of the putative hormone-sensitive cyclic AMP phosphodiesterase from rat adipose tissue using a derivative of cilostamide as a novel affinity ligand. J Biol Chem 262: 5797–5807, 1987

    PubMed  Google Scholar 

  8. Grant PG, Colman RW: Purification and characterization of a human platelet cyclic nucleotide phosphodiesterase. Biochemistry 23: 1801–1807, 1984

    PubMed  Google Scholar 

  9. Boyes S, Loten EG: Purification of an insulin-sensitive cyclic AMP phosphodiesterase from rat liver. Eur J Biochem 174: 303–309, 1988

    PubMed  Google Scholar 

  10. Rasc'on A, Lindgren S, Stavenow L, Belfrage P, Andersson KE, Manganiello VC, Degerman E: Purification and properties of the cGMP-inhibited cAMP phosphodiesterase from bovine aortic smooth muscle. Biochim Biophys Acta 1134: 149–156, 1992

    PubMed  Google Scholar 

  11. Lindgren S, Andersson KE: Effects of selective phosphodiesterase inhibitors on isolated coronary, lung and renal arteries from man and rat. Acta Physiol Scand 142: 77–82, 1991

    PubMed  Google Scholar 

  12. Torphy TJ, Undem BJ: Phosphodiesterase inhibitors: new opportunities for the treatment of asthma. Thorax 46: 512–523, 1991

    PubMed  Google Scholar 

  13. Meacci E, Taira M, Moos MJ, Smith CJ, Movsesian MA, Degerman E, Belfrage P, Manganiello V: Molecular cloning and expression of human myocardial cGMP-inhibited cAMP phosphodiesterase. Proc Natl Acad Sci USA 89: 3721–3725, 1992

    PubMed  Google Scholar 

  14. Taira M, Meacci E, Belfrage P, Manganiello VE: The cGMP-inhibited phosphodiesterase gene family: distinct cardiac and adipose tissue isoforms. 8th International Conference on Second Messangers and Phosphoproteins, Abstract#C91T, 1992

  15. MacPhee CH, Harrison SH, Beavo JA: Immunological identification of the major platelet low-Km cAMP phosphodiesterase: probable target for anti-thrombotic agents. Proc Natl Acad Sci USA 83: 6660–6663, 1986

    PubMed  Google Scholar 

  16. Degerman E, Smith CJ, Tornqvist H, Vasta V, Belfrage P, Manganiello VC: Evidence that insulin and isoprenaline activate the cGMP-inhibited low-Km cAMP phosphodiesterase in rat fat cells by phosphorylation. Proc Natl Acad Sci USA 87: 533–537, 1990

    PubMed  Google Scholar 

  17. Boyes S, Loten EG: Insulin and lipolytic hormones stimulate the same phosphodiesterase isoform in rat adipose tissue. Biochem Biophys Res Commun 162: 814–820, 1989

    PubMed  Google Scholar 

  18. Marchmont RJ, Houslay MD: Characterization of the phosphorylated from of the insulin-stimulated cyclic AMP phosphodiesterase from rat liver membranes. Biochem J 195: 653–660, 1981

    PubMed  Google Scholar 

  19. Conti M, Swinnen JV: Molecular genetics of the cyclic nucleotide phosphodiesterases. In: J Beavo, MD Houslay (eds) Structure and function of the rolipram-sensitive, low-Km cyclic AMP phosphodiesterases: a family of highly related enzymes. John Wiley & Sons, Ltd., Chichester, 1990, pp 243–266

    Google Scholar 

  20. Livi GP, Kmetz P, McHale MM, Cieslinski LB, Sathe GM, Taylor DP, Davis RL, Torphy TJ, Balcarek JM: Cloning and expression of cDNA for a human low-Km, rolipram-sensitive cyclic AMP phosphodiesterase. Mol Cell Biol 10: 2678–2686, 1990

    PubMed  Google Scholar 

  21. Epstein PM, Strada SJ, Sarada K, Thompson WJ: Catalytic and kinetic properties of purified high-affinity cyclic AMP phosphodiesterase from dog kidney. Arch Biochem Biophys 218: 119–133, 1982

    PubMed  Google Scholar 

  22. Housley MD, Kilgour E: Cyclic nucleotide phosphodiesterases in liver: a review of their characterization, regulation by insulin and glucagon and their role in controlling intracellular cyclic AMP concentrations. In: JA Beavo, MD Housley (eds) Cyclic nucleotide phosphodiesterases: structure, regulation and drug action. John Wiley & Sons, Ltd. Chichester, 1990, pp 185–224

    Google Scholar 

  23. Loten EG, Sneyd JGT: An effect of insulin on adipose-tissue adenosine 3′:5′-cyclic monophosphate phosphodiesterase. Biochem J 120: 187–193, 1970

    PubMed  Google Scholar 

  24. Allan EH, Sneyd JGT: An effect of glucagon on 3′,5′-cyclic AMP phosphodiesterase activity in isolated rat hepatocytes. Biochem Biophys Res Commun 62: 594–601, 1975

    PubMed  Google Scholar 

  25. Heyworth CM, Wallace AV, Houslay MD: Insulin and glucagon regulate the activation of two distinct membrane-bound cyclic AMP phosphodiesterases in hepatocytes. Biochem J 214: 99–110, 1983

    PubMed  Google Scholar 

  26. Housley MD, Griffiths SL, Horton YM, Livingstone C, Lobban M, MacDonald F, Morris N, Pryde J, Scotland G, Shakur Y et al.: Regulation of intracellular cyclic AMP concentrations in hepatocytes involves the integrated activation and desensitization of adenylyl cyclase coupled with the action and activation of specific isoforms of cyclic AMP phosphodiesterase. Biochem Soc Trans 20: 140–146, 1992

    PubMed  Google Scholar 

  27. Loten EG, Assimacopoulos-Jeannet FD, Exton JH, Park CR: Stimulation of a low Km phosphodiesterase from liver by insulin and glucagon. J Biol Chem 253: 746–757, 1978

    PubMed  Google Scholar 

  28. Kilgour E, Anderson NG, Housley MD: Activation and phosphorylation of the ‘dense-vesicle’ high-affinity cyclic AMP phosphodiesterase by cyclic AMP-dependent protein kinase. Biochem J 260: 27–36, 1989

    PubMed  Google Scholar 

  29. Shibata HaK, T: Stimulation of the insulin-sensitive cAMP phosphodiesterase by an ATP-dependent soluble factor from insulintreated rat adipocytes. Biochem Biophys Res Comm 167: 64–620, 1990

    Google Scholar 

  30. Wolfe L, Bradford AP, Klarland JK, Czech MP: Purification and characterization of a cytosolic insulin-stimulated serine kinase from rat liver. J Biol Chem 267: 9749–9756, 1992

    PubMed  Google Scholar 

  31. Beebe SJ, Redmon JB, Blackmore PF, Corbin JD: Discriminative insulin antagonism of stimulatory effects of various cAMP analogs on adipocyte lipolysis and hepatocyte glycogenolysis. J Biol Chem 260: 15781–15788, 1985

    PubMed  Google Scholar 

  32. Pyne NJ, Cushley W, Nimmo HG, Housley MD: Insulin stimulates the tyrosyl phosphorylation and activation of the 52kDa peripheral plasma-membrane cyclic AMP phosphodiesterase in intact hepatocytes. Biochem J 261: 897–904, 1989

    PubMed  Google Scholar 

  33. Manganiello VC, Smith CJ, Degerman E, Vasta V, Tornquist H, Belfrage P: Molecular mechanisms involved in the antilypolytic action of insulin: phosphorylation and activation of a particulate cAMP phosphodiesterase. Adv Exp Med Biol 293: 239–248, 1991

    PubMed  Google Scholar 

  34. Steinberg D, Mayer SE, Khoo JC, Miller EA, Miller RE, Fredholm B, Eichner R: Hormonal regulation of lipase, phosphorylase and glycogen synthase in adipose tissue. Adv Cyc Nuc Res 5: 549–568, 1975

    Google Scholar 

  35. Flawn P, Sadighi M, Loten EG: Phosphorylation of hormone sensitive phosphodiesterase in isolated adipocytes. Biochemistry Int 22: 279–286, 1990

    Google Scholar 

  36. Smith CJ, Valeria V, Degerman E, Belfrage P, Manganiello VC: Hormone-sensitive cyclic GMP-inhibited cyclic AMP phosphodiesterase in rat adipocytes. J Biol Chem 266: 13385–13390, 1991

    PubMed  Google Scholar 

  37. Smith CJ, Manganiello VC: Role of hormone-sensitive low Km cAMP phosphodiesterase in regulation of cAMP-dependent protein kinase and lipolysis in rat adipocytes. Mol Pharmacol 35: 381–386, 1989

    PubMed  Google Scholar 

  38. Ashby B, Daniel JL, Smith JB: Mechanisms of platelet activation and inhibition. Hematol Oncol Clin North Am 4: 1–26, 1990

    Google Scholar 

  39. Grant PG, Mannarino AF, Colman RW: cAMP-mediated phosphorylation of the low-Km cAMP phosphodiesterase markedly stimulates its catalytic activity. Proc Natl Acad Sci USA 85: 9071–9075, 1988

    PubMed  Google Scholar 

  40. MacPhee CH, Reifsnyder DH, Moore TA, Beavo JA: Intact cell and cell-free phosphorylation and concomitant activation of a low Km cAMP phosphodiesterase found in human platelets. J Cyclic Nuc Proc Phos Res 11: 487–496, 1987

    Google Scholar 

  41. MacPhee CH, Reifsnyder DH, Moore TA, Lerea KM, Beavo JA Phoshorylation results in activation of a cAMP phosphodiesterase in human platelets. J Biol Chem 263: 10353–10358, 1988

    PubMed  Google Scholar 

  42. Hendra T, Betteridge DJ: Platelet function, platelet prostanoids and vascular prostacyclin in diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 35: 197–212, 1989

    PubMed  Google Scholar 

  43. Lopez-Aparicio P, Roscon A, Manganiello VC, Andersson K-E, Belfrage P, Degerman E: Insulin induced phosphorylation and activation of the cGMP-inhibited phosphodiesterase in human platelets. Biochem Biophys Res Comm 186: 517–523, 1992

    PubMed  Google Scholar 

  44. Beavo JA, Reifsnyder DH: Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci 11: 150–155, 1990

    PubMed  Google Scholar 

  45. Wang JH, Sharma RK, Mooibroik MJ: Calmodulin-stimulated cyclic nucleotide phosphodiesterases. In: J Beavo, MD Houslay (eds) Cyclic Nucleotide Phosphodiesterases: Structure, Regulation and Drug Action. John Wiley & Sons, Ltd., Chichester, 1990, pp 19–60

    Google Scholar 

  46. Beavo J: Multiple phosphodiesterase isoenzymes: background, nomenclature and implications. In: J Beavo, MD Houslay (eds) Cyclic Nucleotide Phosphodiesterases: Structure, Regulation and Drug Action. John Wiley & Sons, Ltd., Chichester, 1990, pp 3–18

    Google Scholar 

  47. Charbonneau H: Structure-function relationships among cyclic nucleotide phosphodiesterases. In: J Beavo, MD Houslay (eds) Cyclic Nucleotide Phosphodiesterases: Structure, Regulation and Drug Action. John Wiley & Sons, Ltd., Chichester, 1990, pp 267–298

    Google Scholar 

  48. Hansen RS, Beavo JA: Differential recognition of calmodulin-enzyme complexes by a conformation-specific anti-calmodulin monoclonal antibody. J Biol Chem 261: 14636–14645, 1986

    PubMed  Google Scholar 

  49. Sharma RK, Wang JH: Regulation of cAMP concentration by calmodulin-dependent cyclic nucleotide phosphodiesterase. Biochem Cell Biol 64: 1072–1080, 1986

    PubMed  Google Scholar 

  50. Sharma RK: Phosphorylation and characterization of bovine heart calmodulin-dependent phosphodiesterase. Biochemistry 30: 5963–5968, 1991

    PubMed  Google Scholar 

  51. Klee CB: Calmodulin: the coupling factor of the two second messengers calcium and cAMP. In: TG Podesta, EJ Gordon (eds) Protein Phosphorylation and Bioregulation. Karger, Basel, 1980, pp 61–69

    Google Scholar 

  52. Charbonneau H, Kumar S, Novack JP, Blumenthal DK, Griffin PR, Shabanowitz J, Hunt DF, Beavo JA, Walsh KA: Evidence for domain organization within the 61-kDa calmodulin-dependent cyclic nucleotide phosphodiesterase from bovine brain. Biochemistry 30: 7931–7940, 1991

    PubMed  Google Scholar 

  53. Novack JP, Charbonneau H, Bentley JK, Walsh KA, Beavo JA: Sequence comparison of the 63-, 61-, and 59-kDa calmodulin-dependent cyclic nucleotide phosphodiesterases. Biochemistry 30: 7940–7947, 1991

    PubMed  Google Scholar 

  54. Bentley JK, Kadlecek A, Sherbert CH, Seger D, Sonnenburg WK, Charbonneau H, Novack JP, Beavo JA: Molecular cloning of cDNA encoding a ‘63’-kDa calmodulin-stimulated phosphodiesterase from bovine brain. J Biol Chem 267: 18676–18682, 1992

    PubMed  Google Scholar 

  55. Repaske dR, Swinnen JV, Jin SL, Van WJJ, Conti M: A polymerase chain reaction strategy to identify and clone cyclic nucleotide phosphodiesterase cDNAs. Molecular cloning of the cDNA encoding the 63-kDa calmodulin-dependent phosphodiesterase. J Biol Chem 267: 18683–18688, 1992

    PubMed  Google Scholar 

  56. Polli JW, Kincaid RL: Molecular cloning of DNA encoding a calmodulin-dependent phosphodiesterase enriched in striatum. Proc Natl Acad Sci USA 89: 11079–11083, 1992

    PubMed  Google Scholar 

  57. Sonnenburg WK, Seger D, Beavo JA: Molecular cloning of a cDNA encoding the ‘61 kDa’ calmodulin-stimulated cyclic nucleotide phosphodiesterase: tissue-specific expression of structurally related isoforms. J Biol Chem 268: 645–652, 1993

    PubMed  Google Scholar 

  58. Charbonneau H, Beier N, Walsh KA, Beavo JA: Identification of a conserved domain among cyclic nucleotide phosphodiesterases from diverse species. Proc Natl Acad Sci USA 83: 9308–9312, 1986

    PubMed  Google Scholar 

  59. Tucker MM, Robinson JB, Stellwagen E: The effect of proteolysis on the calmodulin activation of cyclic nucleotide phosphodiesterase. J Biol Chem 256: 9051–9058, 1981

    PubMed  Google Scholar 

  60. Krinks MH, Haiech J, Rhoads A, Klee CB: Reversible and irreversible activation of cyclic nucleotide phosphodiesterase: separation of the regulatory and catalytic domains by limited proteolysis. Adv Cyclic Nucleotide Protein Phosphorylation Res 16: 31–47, 1984

    PubMed  Google Scholar 

  61. Sharma RK, Wang JH: Differential regulation of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase isoenzymes by cyclic AMP-dependent protein kinase and calmodulin-dependent phosphatase. Proc Natl Acad Sci USA 82: 2603–2607, 1985

    PubMed  Google Scholar 

  62. Kincaid RL, Stith CIE, Vaughan M: Proteolytic activation of calmodulin-dependent cyclic nucleotide phosphodiesterase. J Biol Chem 260: 9009–9015, 1985

    PubMed  Google Scholar 

  63. Sharma RK, Wang JH: Calmodulin and Ca2≈-dependent phosphorylation and dephosphorylation of 63-kDa subunit-containing bovine brain calmodulin-stimulated cyclic nucleotide phosphodiesterase isozyme. J Biol Chem 261: 1322–1328, 1986

    PubMed  Google Scholar 

  64. Hashimoto Y, Sharma RK, Soderling TR: Regulation of Ca2≈/calmodulin-dependent cyclic nucleotide phosphodiesterase by the autophosphorylated form of Ca2≈/calmodulin-dependent protein kinase II. J Biol Chem 264: 10884–10887, 1989

    PubMed  Google Scholar 

  65. Miot F, Dumont JE, Erneux C: The involvement of a calmodulin-dependent phosphodiesterase in the negative control of carbamylcholine on cyclic AMP levels in dog thyroid slices. FEBS Lett 151: 273–276, 1983

    PubMed  Google Scholar 

  66. Tanner LI, Harden TK, Wells JN, Martin MW: Identification of the phosphodiesterase regulated by muscarinic cholinergic receptors of 1321N1 human astrocytoma cells. Mol Pharmacol 29: 455–460, 1986

    PubMed  Google Scholar 

  67. Buxton IL, Brunton LL: Action of the cardiac alpha 1-adrenergic receptor. Activation of cyclic AMP degradation. J Biol Chem 260: 6733–6737, 1985

    PubMed  Google Scholar 

  68. Kramer RH, Levitan ES, Wilson MP, Levitan IB: Mechanism of calcium-dependent inactivation of a potassium current in Aplysia neuron R15: interaction between calcium and cyclic AMP: J Neurosci 8: 1804–1813, 1988

    PubMed  Google Scholar 

  69. Zhong Y, Wu C-H: Altered synaptic plasticity in Drosophila memory mutants with a defective cyclic AMP cascade. Science 251: 198–201, 1991

    PubMed  Google Scholar 

  70. Swope SL, Moss SJ, Blackstone CD, Huganir RL: Phosphorylation of ligand-gated ion channels: a possible mode of synaptic plasticity. FASEB J 6: 2514–2523, 1992

    PubMed  Google Scholar 

  71. Bakalyar HA, Reed RR: Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250: 1403–1406, 1990

    PubMed  Google Scholar 

  72. Krupinski J: The adenylyl cyclase family. Mol Cell Biochem 104: 73–79, 1991

    PubMed  Google Scholar 

  73. Choi EJ, Xia Z, Storm DR: Stimulation of the type III olfactory adenylyl cyclase by calcium and calmodulin. Biochemistry 31: 6492–6498, 1992

    PubMed  Google Scholar 

  74. Wang L, Taverna FA, Huang X, MacDonald JF, Hampson DR: Phosphorylation and modulation of kainate receptor (GluR6) by cAMP-dependent protein kinase. Science 259: 1173–1175, 1993

    PubMed  Google Scholar 

  75. Nagamine Y, Reich E: Gene expression and cAMP. Proc Natl Acad Sci USA 82: 4606–4610, 1985

    PubMed  Google Scholar 

  76. Yamamoto KK, Gonzalez GA, Biggs WH3, Montminy MR: Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature 334: 494–498, 1988

    PubMed  Google Scholar 

  77. Francis SH, Thomas MK, Corbin JD: Cyclic GMP-binding cyclic GMP-specific phosphodiesterase from lung. In: J Beavo, MD Houslay (eds) Cyclic Nucleotide Phosphodiesterases: Structure, Regulation and Drug Action. John Wiley & Sons, Ltd., Chichester, 1990, pp 117–140

    Google Scholar 

  78. Thomas MK, Francis SH, Corbin JD: Characterization of a purified bovine lung cGMP-binding cGMP phosphodiesterase. J Biol Chem 265: 14964–14970, 1990

    PubMed  Google Scholar 

  79. MacAllister-Lucas LM, Sonnenburg WK, Kadlecek A, Seger D, Trong HL, Colbran JL, Thomas MK, Walsh KA, Francis SH, Corbin JD, Beavo JA: The structure of a bovine lung cGMP-binding, cGMP-specific phosphodiesterase deduced from a cDNA clone. J Biol Chem, 1993, in press

  80. Robichon A: A new cGMP phosphodiesterase isolated from bovine platelets is substrate for cAMP-and cGMP-dependent protein kinases: evidence for a key role in the process of platelet activation. J Cell Biochem 47: 147–157, 1991

    PubMed  Google Scholar 

  81. Thomas MK, Francis SH, Beebe SJ, Gettys TW, Corbin JD: Partial mapping of cyclic nucleotide sites and studies of regulatory mechanisms of phosphodiesterases using cyclic nucleotide analogs. In: SJ Strada, H. Hidaka (eds) The Biology of Cyclic Nucleotide Phosphodiesterases. Raven Press, 1992, pp 45–54.

  82. Burns F, Rodger IW, Pyne NJ: The catalytic subunit of protein kinase A triggers activation of the type V cyclic GMP-specific phosphodiesterase from guinea-pig lung. Biochem J 283: 487–491, 1992

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beltman, J., Sonnenburg, W.K. & Beavo, J.A. The role of protein phosphorylation in the regulation of cyclic nucleotide phosphodiesterases. Mol Cell Biochem 127, 239–253 (1993). https://doi.org/10.1007/BF01076775

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01076775

Key words

Navigation