Skip to main content
Log in

Thermodynamics of the dissociation of morpholinium ion in seawater from 5 to 40°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The dissociation constant of morpholinium ion has been determined in five synthetic seawaters at eight temperatures from 5 to 40°C. The seawater solvents contained NaCl, MgCl2, Na2SO4, CaCl2, and KCl in amounts corresponding to salinities of approximately 10, 20, 30, 35, and 40‰ (parts per thousand) and ionic strengths ranging from 0.2 to 0.8 mol-kg−1. Electromotive-force measurements of cells without liquid junction, with hydrogen gas electrodes and Ag/AgCl electrodes, were used to derive the dissociation constant and associated changes of enthalpy, entropy, and heat capacity for the dissociation equilibrium. The pK values over the range of salinity S and thermodynamic temperature T studied are given by the equation

$$\begin{gathered} pK = (1396.58 + 1.822S)/T - 2.14236 InT + 16.0138 + 0.001912S \hfill \\ - 9.722 \times 10^{ - 5} S^2 + 1.025 \times 10^{ - 6} S^3 \hfill \\ \end{gathered}$$

At a salinity of 35‰, corresponding to ‘normal seawater’, pK is higher by 0.206 at 25°C than in the water solvent, while ΔHo is increased by 292 cal-mol−1 and both ΔSo and ΔC p o are substantially unchanged. The buffer composed of 0.04 molal morpholinium chloride and 0.04 molal morpholine is useful for pH control in synthetic seawater media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. H. Khoo, R. W. Ramette, C. H. Culberson, and R. G. Bates,Anal. Chem. 49, 29 (1977).

    Google Scholar 

  2. R. G. Bates and C. H. Culberson, inThe Fate of Fossil Fuel CO 2 in the Oceans, N. R. Andersen and A. Malahoff, eds. (Plenum Press, New York, 1977), p. 45.

    Google Scholar 

  3. K. H. Khoo, C. H. Culberson, and R. G. Bates,J. Solution Chem. 6, 281 (1977).

    Google Scholar 

  4. R. W. Ramette, C. H. Culberson, and R. G. Bates,Anal. Chem. 49, 867 (1977).

    Google Scholar 

  5. R. G. Bates and J. G. Calais,J. Solution Chem. 10, 269 (1981).

    Google Scholar 

  6. W. R. Erickson, M. S. Thesis, University of Florida, 1980.

  7. H. B. Hetzer, R. G. Bates, and R. A. Robinson,J. Phys. Chem. 70, 2869 (1966).

    Google Scholar 

  8. J. Czerminski, A. G. Dickson, and R. G. Bates, unpublished work.

  9. A. G. Dickson and J. P. Riley,Mar. Chem. 7, 89 (1979).

    Google Scholar 

  10. D. R. Kester and R. M. Pytkowicz,Geochim. Cosmochim. Acta 34, 1039 (1970).

    Google Scholar 

  11. R. G. Bates,Determination of pH, Theory and Practice, 2nd ed. (John Wiley & Sons, Inc., New York, 1973), Chap. 10.

    Google Scholar 

  12. R. A. Robinson,J. Mar. Biol. Assoc. U.K. 33, 449 (1954).

    Google Scholar 

  13. R. G. Bates and J. B. Macaskill,Pure Appl. Chem. 50, 1701 (1978).

    Google Scholar 

  14. R. G. Bates and V. E. Bower,J. Res. Natl. Bur. Stand. 53, 283 (1954).

    Google Scholar 

  15. D. J. G. Ives and P. G. N. Moseley,J. Chem. Soc., Faraday Trans. I 72, 1132 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave 1980–1981 from the University of Gdańsk, Poland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czerminski, J.B., Dickson, A.G. & Bates, R.G. Thermodynamics of the dissociation of morpholinium ion in seawater from 5 to 40°C. J Solution Chem 11, 79–89 (1982). https://doi.org/10.1007/BF01036376

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01036376

Key words

Navigation