Skip to main content
Log in

The goodness of ergodic adiabatic invariants

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For a “slowly” time-dependent Hamiltonian system exhibiting chaotic motion that ergodically covers the energy surface, the phase space volume enclosed inside this surface is an adiabatic invariant. In this paper we examine, both numerically and theoretically, how the error in this “ergodic adiabatic invariant” scales with the slowness of the time variation of the Hamiltonian. It is found that under certain circumstances, the error is diffusive and scales likeT −1/2, whereT is the characteristic time over which the Hamiltonian changes. On the other hand, for other cases (where motion in the Hamiltonian has a long-time 1/t tail in a certain correlation function), the error scales like [T −1 ln(T)]1/2. Both of these scalings are verified by numerical experiments. In the situation where invariant tori exist amid chaos, the motion may not be fully ergodic on the entire energy surface. The ergodic adiabatic invariant may still be useful in this case and the circumstances under which this is so are investigated numerically (in particular, the islands have to be small enough).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Jammer,The Conceptual Development of Quantum Mechanics (McGraw-Hill, 1966), pp. 96–97.

  2. A. Lenard,Ann. Phys. (N.Y.) 6:261 (1959).

    Google Scholar 

  3. C. S. Gardner,Phys. Rev. 115:791 (1959).

    Google Scholar 

  4. M. D. Kruskal, inPlasma Physics (International Atomic Energy Agency, 1965).

  5. R. Kulsrud,Phys. Rev. 106:205 (1957).

    Google Scholar 

  6. T. G. Northrop,The Adiabatic Motion of Charged Particles (Interscience, 1963).

  7. M. N. Rosenbluth and C. L. Longmire,Ann. Phys. 1:120 (1957).

    Google Scholar 

  8. T. M. Antonsen, Jr. and Y. C. Lee,Phys. Fluids 25:132 (1982).

    Google Scholar 

  9. P. Ehrenfest,Phil. Mag. 33:500 (1917) [reprinted in B. L. van der Waerden, ed.,Sources of Quantum Mechanics (Dover, 1967)].

    Google Scholar 

  10. R. Kubo,Statistical Mechanics (North-Holland, Amsterdam, 1965), p. 14.

    Google Scholar 

  11. E. Ott,Phys. Rev. Lett. 24:1628 (1979).

    Google Scholar 

  12. H. Goldstein,Classical Mechanics (Addison-Wesley, 1959), p. 250.

  13. R. V. Lovelace,Phys. Fluids 22:542 (1979).

    Google Scholar 

  14. A. Y. Wong, Y. Nakamura, B. H. Quon, and J. M. Dawson,Phys. Rev. Lett. 35:1156 (1975).

    Google Scholar 

  15. Ya. G. Sinai,Russ. Math. Surv. 25:137 (1970).

    Google Scholar 

  16. A. Zacherl, T. Geisel, J. Nierwetberg, and G. Radons,Phys. Lett. A 114:317 (1986).

    Google Scholar 

  17. G. Casati, G. Comparin, and I. Guarneri,Phys. Rev. A 26:717 (1982).

    Google Scholar 

  18. A. Carnegie and I. C. Percival,J. Phys. A: Math. Gen. 17:801 (1984).

    Google Scholar 

  19. M. V. Berry, inTheoretical and Applied Mechanics (Elsevier, 1985).

  20. I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and Products (Academic Press, 1980), p. 162.

  21. R. Brown, E. Ott, and C. Grebogi,Phys. Rev. Lett. 59:1173 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, R., Ott, E. & Grebogi, C. The goodness of ergodic adiabatic invariants. J Stat Phys 49, 511–550 (1987). https://doi.org/10.1007/BF01009347

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009347

Key words

Navigation