Skip to main content
Log in

Acrylamide impairs fast and slow axonal transport in rat optic system

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Effects of single and repeated doses of acrylamide on fast and slow axonal transport of radio labeled proteins following the injection of L-[4,5-3H] leucine have been studied in the optic system of male Sprague-Dawley rats. A single dose of acrylamide (100 mg/kg) had no effect, but higher concentrations (200–300 mg/kg) altered the distribution of fast axonally transported materials in optic nerves and optic tracts. Repeated doses of acrylamide (30 mg/kg/day, 5 days per week for 4 weeks) produced degeneration of tibial nerves but spared optic nerves and optic tracts. Fast axonal transport rate in optic axons was reduced by 50% (reduced to 4 mm/h from 8 mm/h) in acrylamide treated animals. Acrylamide also slowed the velocity of slow axonal transport of labeled proteins in optic axons to 1.0 mm per day from 1.3 mm per day. Since acrylamide impaired the rate of both fast and slow axonal transport in the absence of overt morphological damage, it can be concluded that deficit in axonal transport is an important factor in the pathogenesis of axonal degeneration in acrylamide neuropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradley, W. G. and Williams, M. H., 1973. Axoplasmic flow in axonal neuropathies. Brain, 96:235–246.

    Google Scholar 

  2. Brimijoin, S., 1984. The role of axonal transport in nerve disease. Pages 477–493,in (P. J. Dyck, P. K. Thomas, E. H. Lambert, and R. Bunge, eds), Peripheral Neuropathy W. B. Saunders Co., Philadelphia.

    Google Scholar 

  3. Eskin, T. A., Lapham, L. W., Maurissen, J. P. J., and Merigan, W. H., 1985. Acrylamide effects on the macaque visual system. II. Retinogeniculate morphology. Invest. Ophth. Vis. Sci., 26:317–329.

    Google Scholar 

  4. Fullerton, P. M., 1969. Electrophysiological and histological observations on peripheral nerves in acrylamide poisoning in man. J. Neurol. Neurosurg. Psychiatry, 32, 186–192.

    Google Scholar 

  5. Fullerton, P. M., and Barnes, J. M., 1966. Peripheral neuropathy in rats produced by acrylamide. Brit. J. Ind. Med., 23:210–221.

    Google Scholar 

  6. Garland, T. O., and Patterson, M. W. H., 1967. Six cases of acrylamide poisoning. Brit. Med. J., 4:134–138.

    Google Scholar 

  7. Griffin, J. W., Price, D. L., and Drachman, D. B., 1977. Impaired axonal regeneration in acrylamide intoxication. J. Neurobiol. 8:355–370.

    Google Scholar 

  8. Harry, G. J., Goodrum, J. F., Bouldin, T. W., Toews, A. D., and Morell, P., 1989, Acrylamide-induced increases in deposition of axonally transported glycoproteins in rat sciatic nerve. J. Neurochem. 52:1240–1247.

    Google Scholar 

  9. McLean, W. G., Frizell, M., and Sjostrand, J., 1985, Pathology of axonal transport. Pages 67–86,in A. Lajtha, (ed), Handbook of Neurochemistry vol. 9 Plenum Press, NY.

    Google Scholar 

  10. Miller, M. S., and Spencer, P. S., 1984, Single doses of acrylamide reduce retrograde transport velocity. J. Neurochem., 43:1401–1408.

    Google Scholar 

  11. Miller, M. S., and Spencer, P. S., 1985, Mechanisms of acrylamide neuropathy. Ann. Rev. Pharmacol. Toxicol., 25:643–666.

    Google Scholar 

  12. Moretto, A., and Sabri, M. I., 1988, Progressive deficits in retrograde axon transport precede degeneration of motor axons in acrylamide neuropathy. Brain Res. 440:18–24.

    Google Scholar 

  13. Nagata, H., and Brimijoin, S., 1986, Axonal transport in the motor neurons of rats with neuropathy induced by p-bromophenyl acetylurea. Ann. Neurol. 19:458–464.

    Google Scholar 

  14. Pleasure, D. E., Mishler, K. C. and Engel, W. K., 1969, Axonal transport of proteins in experimental neuropathies. Science, 166:524–525.

    Google Scholar 

  15. Prineas, J., 1969. The pathogenesis of dying-back polyneuropathies II. An ultrastructural study of experimental acrylamide intoxication in the cat. J. Neuropathol. Exp. Neurol. 28:598–621.

    Google Scholar 

  16. Sabri, M. I., 1983. In vitro and in vivo inhibition of glycolytic enzymes by acrylamide. Neurochem. Pathology, 1:179–191.

    Google Scholar 

  17. Sabri, M. I., 1983. Mechanism of action of acrylamide on the nervous system. Biol. Memoirs, 8:16–27.

    Google Scholar 

  18. Sabri, M. I., Soiefer, A. I., Moretto, A., Lotti, M., Miller, M. S. and Spencer, P. S. 1987. Early retrograde transport defects induced by primary axonal toxins. Pages 459–472,in R. S. Smith, and M. A. Bisby, (eds), Axonal Transport Alan R. Liss, Inc., NY.

    Google Scholar 

  19. Sabri, M. I. and Spencer, P. S., 1980. Toxic distal axonopathy: Biochemical studies and hypothetical mechanisms. Pages 206–219, in P. S. Spencer, and H. H. Schaumburg, (eds.), Experimental and Clinical Neurotoxicology Williams and Wilkins Co., Baltimore, MD.

    Google Scholar 

  20. Sabri, M. I. and Spencer, P. S., 1989, Acrylamide inhibits fast axon transport in rat optic axons. Trans. Am. Soc. Neurochem. 20:218.

    Google Scholar 

  21. Sahenk, Z. and Mendell, J. R., 1981. Acrylamide and 2,5-hexanedione neuropathies: abnormal bidirectional transport rate in distal axons. Brain Res. 219:397–405.

    Google Scholar 

  22. Schaumburg, H. H., and Spencer, P. S., 1979. Clinical and experimental studies of distal axonopathy: a frequent form of brain and nerve damage produced by environmental chemical hazards. Ann. N.Y. Acad. Sci. 329:14–19.

    Google Scholar 

  23. Schaumburg, H. H., Wisniewski, H., and Spencer, P. S., 1974. Ultrastructural studies of the dying-back process 1. Peripheral nerve terminals and axon degeneration in systemic acrylamide intoxication. J. Neuropathol. Exp. Neurol. 33:260–284.

    Google Scholar 

  24. Sickles, D. W., 1989. Toxic neurofilamentous axonopathies and fast anterograde axonal transport. 1. The effects of single doses of acrylamide on the rate and capacity of transport. Neurotoxicology 10:91–101.

    Google Scholar 

  25. Sidenius, P., and Jakobsen, J., 1983. Anterograde axonal transport in rats during intoxication with acrylamide. J. Neurochem. 40:697–704.

    Google Scholar 

  26. Spencer, P. S., and Schaumburg, H. H., 1974. A review of acrylamide neurotoxicity part I. Properties, uses and human exposure. Can. J. Neurol. Sci. 1:143–152.

    Google Scholar 

  27. Spencer, P. S., and Schaumburg, H. H., 1974. A review of acrylamide neurotoxicity part II. Experimental animal neurotoxicity and pathologic mechanisms. Can. J. Neurol. Sci. 1:152–169.

    Google Scholar 

  28. Spencer, P. S., and Schaumburg, H. H., 1977. Ultrastructural studies of the dying-back process. III. The evolution of experimental peripheral giant axonal disease. J. Neuropathol. Exp. Neurol. 36:276–299.

    Google Scholar 

  29. Spencer, P. S., Miller, M. S., Ross, S. M., Schwab, B. W., and Sabri, M. I., 1985 Biochemical mechanisms underlying primary degeneration of axons. Pages 31–65,in A. Lajtha, (ed), Handbook of Neurochemistry vol. 9, Plenum Press, NY.

    Google Scholar 

  30. Weir, R. L., Glaubiger, G., and Chase, T. N., 1978. Inhibition of fast axoplasmic transport by acrylamide. Environ. Res. 17:251–255.

    Google Scholar 

  31. Vallee, R. B., Shpetner, H. S., and Paschal, B. M., 1989. The role of dynein in retrograde axonal transport. TINS. 12:66–70.

    Google Scholar 

  32. Wagner, M. C., Pfister, K. K., Bloom, G. S., and Brady, S. T. 1989. Co-purification of kinesin polypeptide with microtubulestimulated Mg-ATPase activity and kinetic analysis of enzymatic properties. Cell. Motility and Cytoskeleton. 12:195–215.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabri, M.I., Spencer, P.S. Acrylamide impairs fast and slow axonal transport in rat optic system. Neurochem Res 15, 603–608 (1990). https://doi.org/10.1007/BF00973750

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00973750

Key Words

Navigation