Skip to main content
Log in

Susceptibility of myelin proteins to a neutral endoproteinase: The degradation of myelin basic protein (MBP) and P2 protein by purified bovine brain multicatalytic proteinase complex (MPC)

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Multicatalytic proteinase complex (MPC) was isolated from bovine brain and the susceptibility of myelin basic protein (MBP) and P2 protein of bovine central and peripheral nervous system was examined. SDS-polyacrylamide electrophoretic analysis of purified MPC revealed protein bands of molecular weight ranging from 22–35 kDa. The enzyme is activated by SDS at a concentration less than 0.01%. Upon incubation with MPC, purified MBP and P2 proteins were degraded into smaller fragments. There was a 57% and 100% loss of MBP at 2 and 6 hours of incubation. The P2 protein which is not susceptible to any endogenous non-lysosomal enzyme thus far studied was digested into small peptide fragments only in the presence of SDS (0.01%) and not in its absence. These results indicate that MPC which is active at physiological conditions may have a role in the turnover of myelin proteins and in demyelinating diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rivett, A. J. 1989. The multicatalytic proteinase. J. Biol. Chem. 264:12215–12219. 264:12215-12219.

    PubMed  Google Scholar 

  2. Rechsteiner, M. 1987. Ubiquitin-mediated pathways for intracellular proteolysis. Ann. Rev. Cell Biol. 3:1–30.

    PubMed  Google Scholar 

  3. Murachi, T. 1984. Calcium-dependent proteinases and specific inhibitors: Calpain and calpastatin. Biochem. Soc. Symp. 49:149–167.

    PubMed  Google Scholar 

  4. Mellgren, R. L. 1987. Calcium-dependent proteases: An enzyme system active at cellular membranes? FASEB J. 1:110–115.

    PubMed  Google Scholar 

  5. Suzuki, K. 1987. Calcium activated neutral protease: Domain structure and activity regulation. Trends Biochem. Sci. 12:103–105.

    Google Scholar 

  6. Banik, N. L., Chakrabarti, A. K., and Hogan, E. L. 1992. Calcium-activated neutral proteinase in myelin: Its role and function, In Myelin, Biology and Chemistry (ed. R. Martenson), The Telford Press, Caldwell, N. J., U. S. A., pp. 571–597.

    Google Scholar 

  7. Wilk, S., and Orlowski, M. 1980. Cation-sensitive neutral endopeptidase: Isolation and specificity of the bovine pituitary enzyme. J. Neurochem. 35:1172–1182.

    PubMed  Google Scholar 

  8. Wilk, S., and Orlowski, M. 1983. Evidence that pituitary cationsensitive neutral endopeptidase is a multicatalytic protein complex. J. Neurochem. 40:842–849.

    PubMed  Google Scholar 

  9. DeMartino, G. N. and Goldberg, A. L. 1979. Identification and partial purification of an ATP-stimulated alkaline protease in rat liver. J. Biol. Chem. 254:3712–3715.

    PubMed  Google Scholar 

  10. Mykles, D. L. 1989. Purification and characterization of a multicatalytic proteinase from crustacean muscle: Comparison of latent and heat-activated forms. Arch. Biochem. Biophys. 274:216–228.

    PubMed  Google Scholar 

  11. McGuire, M. J. and DeMartino, G. N. 1986. Purification and characterization of a high molecular weight proteinase (macropain) from human erythrocytes. Biochim. Biophys. Acta. 873:279–289.

    PubMed  Google Scholar 

  12. Yamamoto, T., Nojima, M., Ishiura, S., and Sugita, H. 1986. Purification of the two forms of the high-molecular-weight neutral proteinase ingensin from rat liver. Biochim. Biophys. Acta. 882:279–304.

    Google Scholar 

  13. Saitoh, Y., Kawahara, H., Miyamatsu, H., and Yokosawa, H. 1991. Comparative studies on proteosomes (multicatalytic proteinases) isolated from spermatozoa and eggs of sea urchins. Comp. Biochem. Physio. 99:71–76.

    Google Scholar 

  14. Dahlmann, B., Kapp, F., Kaen, L., Niedel, B., Pfeifer, G., Hegerl, R., and Baumeister, W. 1989. The multicatalytic proteinase (proteosome) is ubiquitous from eukaryotes to archaebacteria. FEBS Letters. 251:125–131.

    PubMed  Google Scholar 

  15. Kinoshita, M., Hamakubo, T., Fukui, I., Murachi, T., and Toyohara, H. 1989. Significant amount of multicatalytic proteinase identified on membrane from human erythrocyte. J. Biochem. 107:440–444.

    Google Scholar 

  16. Ray, K., and Harris, H. 1985. Purification of neutral lens endopeptidase: Close similarity to a neutral proteinase in pituitary. Proc. Natl. Acad. Sci. USA 82:7545–7549.

    PubMed  Google Scholar 

  17. Azaryan, A., Banay-Schwartz, M., and Lajtha, A. 1989. The presence of ATP-ubiquitin-dependent proteinase complex in bovine brain. Neurochem. Rex. 14:995–1001.

    Google Scholar 

  18. Mellgren, R. L. 1990. Interaction of human erythrocyte multicatalytic proteinase with polycations. Biochim. Biophys. Acta. 1040:28–34.

    PubMed  Google Scholar 

  19. Sato, S., and Shiratsuchi, A. 1990. Chymotrypsin-like activity of chicken liver multicatalytic proteinase resides in the smallest subunit. Biochim. Biophys. Acta. 1041:269–272.

    PubMed  Google Scholar 

  20. Wagner, B. J., Margolis, J. W., and Yim, J. 1991. Covalent labeling of bovine lens multicatalytic preteinase complex with [3H]di-isopropyl fluorophosphate. Curr. Eye Res. 10:485–489.

    PubMed  Google Scholar 

  21. Dahlmann, B., Rutschmann, M., Keuhn, L., and Reinauer, H. 1985. Activation of the multicatalytic proteinase from rat skeletal muscle by fatty acids or sodium dodecyl sulphate. Biochem. J. 228:171–177.

    PubMed  Google Scholar 

  22. McGuire, M. J., McCullough, M. L., Croall, D. E., and DeMartino, G. N. 1989. The high molecular weight multicatalytic proteinase, macropain, exists in a latent form in human erythrocytes. Biochim. Biophys. Acta 995:181–186.

    PubMed  Google Scholar 

  23. Ishiura, S., Tsukahara, T. and Sugita, H. 1990. Molecular and biochemical properties of the ATP stimulated multicatalytic proteinase, ingensin, from rat liver. Int. J. Biochem. 22:1195–1201.

    PubMed  Google Scholar 

  24. Tanaka, K., Li, K., Ichihara, A., Waxman, L., and Goldberg, A. L. 1986. A high molecular weight protease in the cytosol of rat liver. 1. Purification, enzymological properties, and tissue distribution. J. Biol. Chem. 261:15197–15203.

    PubMed  Google Scholar 

  25. Lucas, J., Banik, N. L., Lobo, D., Terry, E., and Hogan, E. L. 1991. MBP and P2 protein digestion by a brain endoproteinase. Trans. Amer. Soc. Neurochem. 22:156.

    Google Scholar 

  26. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 81:248–254.

    Google Scholar 

  27. Oshiro, Y., and Eylar, E. H. 1970. Allergic encephalomyelitis: Preparation of the encephalitogenic basic protein from bovine brain. Arch. Biochem. 138:392–396.

    PubMed  Google Scholar 

  28. Brostoff, S. W. 1984. Immunological responses to myelin and myelin components, Pages 405–439.in Pierre Morell (ed.) Myelin. Plenum Press, New York.

    Google Scholar 

  29. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.

    PubMed  Google Scholar 

  30. Towbin, H., Staehelin, T., and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gel to nitrocellulose sheets. Proc. Natl. Acad. Sci. USA 76:4350–4354.

    PubMed  Google Scholar 

  31. Kinoshita, M., Toyohara, H., and Shimizu, Y. 1990. Induction of carp muscle multicatalytic protease activities by sodium dodecyl sulfate and heating. Comp. Biochem. Physiol. 96B(3):565–569.

    Google Scholar 

  32. Pereira, M. E., Yu, B. O., and Wilk, S. 1991. Evidence that the caseinolytic activity of the multicatalytic proteinase complex represents a fourth distinct component. Am. Soc. Neurochem. 22:229.

    Google Scholar 

  33. Benuck, M., Marks, N., and Hashim, G. 1975. Metabolic instability of myelin proteins; Breakdown of basic protein by cathepsin D. Eur. J. Biochem. 52:615–616.

    PubMed  Google Scholar 

  34. Brostoff, S. W., Reuter, W., Hitchens, M., and Eylar, E. H. 1974. Specific cleavage of the A1 protein from myelin with cathepsin D. J. Biol. Chem. 249:559.

    PubMed  Google Scholar 

  35. Banik, N. L., Chao, C.-H. J., Diebler, G. E., and Hogan, E. L. 1990. Peptide bond specificity of calcium activated neutral proteinase. Trans. Amer. Soc. Neurochem. 21:224.

    Google Scholar 

  36. Sato, S., Quarles, R. H., Brady, R. O., and Tourtellotte, W. W. 1984. Elevated neutral protease activity in myelin from brains of patients with multiple sclerosis. Ann. Neurol. 15:264–267.

    PubMed  Google Scholar 

  37. Tsubata, T., and Takahasi, K. 1989. Limited proteolysis of bovine myelin basic protein by calcium-dependent proteinase from bovine spinal cord. J. Biochem. 105:23–28.

    PubMed  Google Scholar 

  38. Whitaker, J. N., and Seyer, J. M. 1981. The influence of pH on the degradation of bovine myelin basic protein by bovine brain cathepsin D. Biochim. Biophys. Acta. 661:334.

    PubMed  Google Scholar 

  39. Hogan, E. L., Banik, N. L., Goust, J. M., and Lobo, D. 1987. Enzymes in cerebrospinal fluid: Evidence for a calcium-activated neutral proteinase in CSF, Pages 479–487.in A. Lowenthal and J. Raus (eds.) Cellular and Humoral Immunological Components of Cerebrospinal Fluid in Multiple Sclerosis. Plenum Press, New York.

    Google Scholar 

  40. Banik, N. L., Lobo, D., Terry, E., Cox, R., and Hogan, E. L. 1991. Calpain activity in spinal cord injury (SCI). Trans. Amer. Soc. Neurochem. 22:323.

    Google Scholar 

  41. Kwas, S., Masaki, T., Ishiura, S., and Sugita, H. 1991. Multicatalytic proteinase is present in Lewy bodies and neurofibrillary tangles in diffuse Lewy body disease brains. Neurosci. Lett. 128:21–24.

    PubMed  Google Scholar 

  42. Whitaker, J. N., and Seyer, J. M. 1984. Degradation of bovine P2 protein by bovine brain cathepsin D. Neurochem. Res. 9:1431–1443.

    PubMed  Google Scholar 

  43. Weise, M. 1985. Hydrophobic regions of myelin proteins characterized through analysis of hydropathic profiles. J. Neurochem. 44:163–170.

    PubMed  Google Scholar 

  44. Saitoh, Y., Yokosawa, H., and Ishii, S. 1989. Sodium dodecyl sulfate-induced conformational and enzymatic changes of multicatalytic proteinase. Biochem. Biophys. Res. Com. 162:334–339.

    PubMed  Google Scholar 

  45. Woelk, H., and Kanig, K. 1974. Phospholipid metabolism in experimental allergic encephalomyelitis: Activity of brain phospholipase A1 towards specifically labeled glycerophospholipids. J. Neurochem. 207:319–326.

    Google Scholar 

  46. Banik, N. L., Gohil, K., and Davison, A. N. 1976. The action of snake venom, phospholipase A and trypsin on purified myelinin vitro. Biochem. J. 159:273–277.

    PubMed  Google Scholar 

  47. Olee, T., Powers, J. M., and Brostoff, S. W. 1988. A T cell epitope for experimental allergic neuritis. J. Neuroimmunol. 19:167–173.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucas, J., Lobo, D., Terry, E. et al. Susceptibility of myelin proteins to a neutral endoproteinase: The degradation of myelin basic protein (MBP) and P2 protein by purified bovine brain multicatalytic proteinase complex (MPC). Neurochem Res 17, 1261–1266 (1992). https://doi.org/10.1007/BF00968410

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00968410

Key words

Navigation