Skip to main content
Log in

Characterization of Na+−Ca2+ exchange activity in plasma membrane vesicles from postmortem human brain

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Procedures were developed for measurement of Na+/Ca2+ exchange in resealed plasma membrane vesicles from postmortem human brain. The vesicle preparation method permits use of stored frozen tissue with minimal processing required prior to freezing. Vesicles prepared in this manner transport Ca2+ in the presence of a Na+ gradient. The kinetic characteristics of the Na+/Ca2+ exchange process were determined in membrane vesicles isolated from hippocampus and cortex. The Kact for Ca2+ was estimated to be 32 μM for hippocampal and 17 μM for cortical tissue. The maximal rate of Ca2+ uptake (Vmax) was 3.5 nmol/mg protein/15 sec and 3.3 nmol/mg protein/15 sec for hippocampal and cortical tissue, respectively. Exchange activity was dependent on the Na+ gradient, and was optimal in the high pH range. Therefore, membranes in which Na+-dependent o Ca2+ transport activity is preserved can be isolated from postmortem human brain and could be used to determine the influence of pathological conditions on this transport system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blaustein, M. P. 1988. Calcium and synaptic function. Pages 275–304,in Baker, P. F. (ed.), Calcium in Drug Action, Springer-Verlag Inc., Berlin.

    Google Scholar 

  2. Blaustein, M. P., and Oborn, C. J. 1975. The influence of sodium on calcium fluxes in pinched-off nerve terminalsin vitro. J. Physiol. Lond. 247:657–686.

    Google Scholar 

  3. Michaelis, M. L., and Michaelis, E. K. 1981. Ca++ fluxes in resealed synaptic plasma membrane. Life Sci. 28:37–45.

    Google Scholar 

  4. Hakim, G., Itano, T., Verma, A. K., and Penniston, J. T. 1982. Purification of the Ca2+ and Mg2+-requiring ATPase from rat brain synaptic plasma membrane. Biochem. J. 207:225–231.

    Google Scholar 

  5. Michaelis, M. L., Kitos, T. E., Nunley, E. W., Lecluyse, E., and Michaelis, E. K. 1987. Characteristics of Mg2+-dependent, ATP-activated Ca2 transport in synaptic and microsomal membranes and in permeabilized synaptosomes. J. Biol. Chem. 262:4182–4189.

    Google Scholar 

  6. Kaczorowski G. J. 1985. Sodium/calcium exchange and calcium homeostasis in excitable tissue. Pages 215–226,in Egan, R. W. (ed.), Ann. Reports Med. Chem., Academic Press, Inc., New York.

    Google Scholar 

  7. DiPolo, R. and Beauge, L. 1988. Ca2+ transport in nerve fibers. Biochim. Biophys. Acta 947:549–569.

    Google Scholar 

  8. Rahamimoff, H., and Spanier, R. 1979. Sodium-dependent calcium uptake in membrane vesicles derived from rat brain synaptosomes. FEBS Lett. 104:111–114.

    Google Scholar 

  9. Michaelis, M. L., and Michaelis, E. K. 1983. Alcohol and local anesthetic effects on Na+-dependent Ca2+ fluxes in brain synaptic membranc vesicles. Biochem. Pharmacol. 32:963–969.

    Google Scholar 

  10. Reynolds, G. P. 1985. Neurochemical studies in human postmortem brain tissue. Pages 477–496,in Boulton, A. D., and Baker, G. B. (ed.), Neuromethods Vol. 2, General Neurochemical Techniques, Humana Press, Clifton, NJ.

    Google Scholar 

  11. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193:265–208.

    Google Scholar 

  12. Atkinson, A., Gatenby, A. D., and Lowe, A. G. 1973. The determination of inorganic orthophosphate in biological systems. Biochim. Biophys. Acta 320:205–209.

    Google Scholar 

  13. Michaelis, M. L., Johe, K., and Kitos, T. E. 1984. Age-dependent alterations in synaptic membrane systems for Ca2+ regulation. Mech. Ageing Devel. 25:215–225.

    Google Scholar 

  14. Philipson, K. D., Bersohn, M. M., and Nishimoto, A. Y. 1982. Effects of pH on Na+−Ca2+ exchange in canine cardiac sarcolemmal vesicles. Circ. Res. 50:287–293.

    Google Scholar 

  15. Michaelis, M. L., Jayawickreme, C., and Joachims, B. 1989. Chromatographic procedures in the isolation of the Na+−Ca2+ antiporter from brain synaptic membranes. J. Cell. Biol. 107:127a.

    Google Scholar 

  16. Siegel, P. K. S., Cragoe, E. J., Jr., Trumble, M. J., and Kaczorwski, G. J. 1984. Inhibition of Na+/Ca2+ exchange in membrane vesicles and papillary muscle preparations from guinea pig heart by analogs of amiloride. Proc. Natl. Acad. Sci. U.S.A. 81:3238–3242.

    Google Scholar 

  17. Sanchez-Armass, S., and Blaustein, M. P. 1987. Role of sodium/calcium exchange in the regulation of intracellular Ca2+ in nerve terminals. Am. J. Physiol. 252:C595-C603.

    Google Scholar 

  18. Nachshen, D. A., Sanchez-Armass, S., and Weinstein, A. M. 1986. The regulation of cytosolic calcium in rat brain synaptosomes by sodium-dependent calcium efflux. J. Physiol. 381:17–28.

    Google Scholar 

  19. Reeves, J. P., Bailey, C. A. and Hale, C. C. 1986. Redox modification of sodium-calcium exchange activity in cardiac sarcolemmal vesicles. J. Biol. Chem. 261:4948–4955.

    Google Scholar 

  20. Slaughter, R. S., Garcia, M. L., Cragoe, E. J., Jr., Reeves J. P., and Kaczorowski, G. J. 1988. Inhibition of sodium-calcium exchange in cardiac sarcolemmal membrane vesicles. 1. Mechanism of inhibition by amiloride analogues. Biochemistry 27:2403–2409.

    Google Scholar 

  21. Hardy, J. A., Dodd, P. R., Oakley, A. E., Perry, R. H., Edwardson, J. A., and Kidd, A. M. 1983. Metabolically active synaptosomes can be prepared from frozen rat and human brain. J. Neurochem. 40:608–614.

    Google Scholar 

  22. Michaelis, M. L., Michaelis, E. K., and Tehan, T. 1983. Alcohol effects on synaptic membrane calcium ion fluxus. Pharmacol. Biochem. Behav. 18:19–23.

    Google Scholar 

  23. Michaelis, M. L., Kitos, T. E., and Tehan, T. 1985. Differential effects of ethanol on two synaptic membrane Ca2+ transport systems. Alcohol 2:129–132.

    Google Scholar 

  24. Slaughter, R. S., Shevell, J. L., Felix, J. P., Garcia, M. L., and Kaczorowski, G. J. 1989. High levels of sodium-calcium exchange in vascular smooth muscle sarcolemmal membrane vesicles. Biochemistry 28:3995–4002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoel, G., Michaelis, M.L., Freed, W.J. et al. Characterization of Na+−Ca2+ exchange activity in plasma membrane vesicles from postmortem human brain. Neurochem Res 15, 881–887 (1990). https://doi.org/10.1007/BF00965907

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965907

Key words

Navigation