Skip to main content
Log in

Alpha-1 and alpha-2 adrenoceptor binding in cerebral cortex: Role of disulfide and sulfhydryl groups

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The triated adrenergic antagonists Prazosin ([3H]PRZ) and Idazoxan ([3H]IDA, or RX-781094) bind specifically and with high affinity to α1 and α2-adrenoceptors respectively, in membrane preparations from cerebral cortex. Saturation experiments performed to determine the density of receptors and the dissociation constant (K d) were analyzed by the methods of Eadie Hofstee, iterative modelling, and the procedure of Hill, while the specificity of the labelling was verified by displacement experiments. Since receptors are proteins, we examined the role of disulfide (−SS−) bridges and sulfhydryl (−SH) groups in the specific combination of [3H]PRZ and [3H]IDA to the α1 and α2-adrenoceptors. Pretreatment of the membranes with the −SS− reactive DL-dithiothreitol (DTT) or the alkylating agent N-ethylmaleimide (NEM), alone or in combination, decreased specific binding of both ligands, with only minor changes in the non-specific counts. The [3H]IDA binding (α2-sites) was more sensitive to both DTT and NEM than the [3H]PRZ sites (α2-adrenoceptors), and the initial changes induced by alkylation of the α2-site were due to an important decrease in the affinity for [3H]IDA, as judged by the increase in theK d. This modulation in the affinity caused by alkylation of a thiol group could explain the higher potency of the blocking agent tetramine disulfide benextramine at the α2-site. The results provide evidence for the participation of −SS− and −SH groups in the binding site of α1 and α2-adrenoceptors in the cerebral cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronstam, R. S., Abood, L. G., andHoss, W. 1978. Influence of sulfhydryl reagents and heavy metals on the functional state of the muscarinic acetylcholine receptor in rat brain. Mol. Pharmacol. 14:575–586.

    Google Scholar 

  2. Barlow, R. B. 1983. Biodata Handling with Microcomputers. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  3. Barrantes, J. F. 1980. Modulation of acetylcholine receptor states by thiol modification. Biochemistry 19:2957–2965.

    Google Scholar 

  4. Benfey, B. G., Brasili, L., Melchiorre, C., andBelleau, B. 1980. Potentiation and inhibition of nicotinic effects on striated muscle by the tetramine disulfide benextramine. Can. J. Physiol. Pharmacol. 58:984–988.

    Google Scholar 

  5. Cheng, Y.-C., andPrusoff, W. H. 1973. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 percent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 22:3099–3108.

    Google Scholar 

  6. Cleland, W. W. 1964. Dithiothreitol, a new protective reagent for SH groups. Biochemistry 3:480–482.

    Google Scholar 

  7. Curro, F. A., andGreenberg, S. 1983. Characterization of postsynaptic alpha1 and alpha2 adrenergic receptors in canine vascular smooth muscle. Can. J. Physiol. Pharmacol. 61:893–904.

    Google Scholar 

  8. Dausse, J. P., Guicheney, P., Diop, L., andMeyer, P. 1984. Caractérisation biochimique des récepteurs α-adrénergiques centraux. J. Pharmacol. (Paris) 15, (Suppl. 1):23–33.

    Google Scholar 

  9. Del Castillo, J., Escobar, I., andGijon, E. 1971. Effects of the electrophoretic application of sulfhydryi reagents to the end-plate receptors. Int. J. Neurosci. 1:199–209.

    Google Scholar 

  10. De Robertis, E., andFiszer De Plazas, S. 1970. Acetylcholinesterase and acetylcholine proteolipid receptor: two different component of Electroplax membranes. Biochim. Biophys. Acta 219:388–397.

    Google Scholar 

  11. Diop, L., Dausse, J.-P., andMeyer, P. 1983. Specific binding of [3H]rauwolscine to α2-adrenoceptors in rat cerebral cortex: comparison between crude and synaptosomal plasma membranes. J. Neurochem. 41:710–715.

    Google Scholar 

  12. Eadie, G. S. 1952. On the evaluation of the constantsV m andK M in enzyme reactions. Science 116:688.

    Google Scholar 

  13. Ehlert, F. J. Roeske, W. R., andYamamura, H. I. 1980. Regulation of muscarinic receptor binding by guanine nucleotides, ions, and N-ethylmaleimide. J. Supramol. Struct. 14:149–162.

    Google Scholar 

  14. Freedman, J. E., andAghajanian, G. K. 1984. Idazoxan (RX 781094)) antagonizes α2-adrenoceptors on the rat central neurons. Eur. J. Pharmacol. 105:265–272.

    Google Scholar 

  15. Gadie, B., Lane, A. C., McCarthy, P. S., Tulloch, I. F., andWalter, D. S. 1984. 2-Alkyl analogues of idazoxan (RX 781094) with enhanced antagonist potency and selectivity at central α2-adrenoceptors in the rat. Br. J. Pharc. 83:707–712.

    Google Scholar 

  16. Glossmann, H., andPresek, P. 1979. Alpha-noradrenergic receptors in brain membranes: sodium, magnesium and guanylnucleotides modulate agonist binding. Naunyn-Schmiedeberg's Arch. Pharmacol. 306:67–73.

    Google Scholar 

  17. Hill, A. V. 1910. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J. Physiol. (Lond.) 40:iv-vii.

    Google Scholar 

  18. Hofstee, B. H. 1952. On the evaluation of the constants Vm andK M in enzyme reactions. Science 116:329–331.

    Google Scholar 

  19. Hornung, R., Presek, P., andGlossmann, H. 1979. Alpha adrenoceptors in rat brain: direct identification with prazosin. Naunyn-Schmiedeberg's Arch. Pharmac. 308:223–230.

    Google Scholar 

  20. Karlin, A., andBartels, E. 1966. Effects of blocking sulfhydryl groups and of reducing disulfide bonds on the acetylcholine-activated permeability system of the electroplax. Biochim. Biophys. Acta 126:525–535.

    Google Scholar 

  21. Klotz, I. M. 1982. Numbers of receptor sites from Scatchard graphs: facts and fantasies. Science 217:1247–1249.

    Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurements with Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  23. Lucas, M., Hanoune, J., andBockaert, J. 1978. Chemical modification of the β-adrenergic receptors coupled with adenylate cyclase by disulfide bridge-reducing agents. Molec. Pharmacol. 14:227–236.

    Google Scholar 

  24. Mattens, E., Bottari, S., Vokaer, A., andVauquelin, G. 1985. Arginine and cysteine residues in the ligand binding site of alpha 2-adrenergic receptors. Life Sci. 36:355–362.

    Google Scholar 

  25. Melchiorre, C. 1980. Selectivity of α1 and α2 adrenergic agonists and antagonists. I1 Farmaco (Ed. Sci.) 35:535–550.

    Google Scholar 

  26. Miach, P. J., Dausse, J.-P., andMeyer, P. 1978. Direct biochemical demonstration of two types of alpha-adrenoceptors in rat brain. Nature 274:492–494.

    Google Scholar 

  27. Parker, R. B., andWaud, D. R. 1971. Pharmacological estimation of drug-receptor dissociation constants. Statistical evaluation. I. Agonists. J. Pharmacol. Exp. Ther. 177:1–12.

    Google Scholar 

  28. Pimoule, C., Scatton, B., andLanger, S. Z. 1983. [3H]RX 781094: A new antagonist ligand labels α2-adrenoceptors in the rat brain cortex. Eur. J. Pharmacol. 95:79–85.

    Google Scholar 

  29. Quennedy, M.-C., Bockaert, J., andRuout, B. 1984. Direct and indirect effects of sulfhydryl blocking agents on agonist and antagonist binding to central 26-2- and 26-3. Biochem. Pharmacol. 33:3923–3928.

    Google Scholar 

  30. Reader, T. A., andBrière, R. 1982. Modulation by sodium, lithium and calcium of specific3H-prazosin binding in neocortex. Soc. Neurosci. Abstr. 8:659.

    Google Scholar 

  31. Reader, T. A., andBrière, R. 1983. Selective noradrenergic denervation and [3H]-prazosin binding sites in rat neocortex. Brain Res. Bull. 10:155–158.

    Google Scholar 

  32. Reader, T. A., andBrière, R. 1983. Long-term unilateral noradrenergic denervation: monoamine content and3H-prazosin binding sites to rat neocortex. Brain Res. Bull. 11:687–692.

    Google Scholar 

  33. Reader, T. A., andBrière, R. 1985. Evidence for the participation of disulfide and sulfhydryl groups in the specific binding of [3H]prazosin in cerebral cortex. Neurochem. Res. 10:107–122.

    Google Scholar 

  34. Reader, T. A., andDe Robertis, E. 1974. The response of artificial lipid membranes containing a cholinergic hydrophobic protein from Electrophorus electricus. Biochim. Biophys. Acta 352:192–201.

    Google Scholar 

  35. Reader, T. A., andJasper, H. H. 1984. Interactions between monoamines and other transmitters in cerebral cortex. Pages 195–225,in Descarries, L., Reader, T. A., andJasper, H. H. (eds.), Monoamine Innervation of Cerebral Cortex. Alan R. Liss, New York.

    Google Scholar 

  36. Rouot, B., U'Prichard, D. C., andSnyder, S. H. 1980. Multiple alpha2-adrenergic receptor sites in rat brain. Selective regulation of high affinity [3H]clonidine binding by guanine nucleotides and divalent cations. J. Neurochem. 34:374–384.

    Google Scholar 

  37. Salman, K. N., Chai, H. S., Miller, D. D., andPatil, P. N. 1976. Influence of group selective reagents in tissues containing α- and β-adrenoceptors. Eur. J. Pharmacol. 36:41–48.

    Google Scholar 

  38. Smith, J. R., andSimon, E. J. 1980. Selective protection of stereospecific enkephalin and opiate binding againts inactivation by N-ethylmaleimide: evidence for two classes of opiate receptors. Proc. Natl. Acad. Sci. U.S.A. 77:281–284.

    Google Scholar 

  39. Starke, K. 1981. α-Adrenoceptor subclassification. Rev. Physiol. Biochem. Pharmacol. 88:199–236.

    Google Scholar 

  40. Strauss, W. L. 1984. Sulfhydryl groups and disulfide bonds: modification of amino acid residues in studies of receptor structure and function. Pages 85–97,in Venter, J. C., andHarrison, L. C. (eds.), Membranes, Detergents and Receptor Solubilization. Alan R. Liss, Inc., New York.

    Google Scholar 

  41. Suen, E. T., Stefanini, E., andClement-Cormier, Y. C. 1978. Evidence for the essential thiol groups and disulfide bonds in agonist and antagonist binding to the dopamine receptor. Biochem. Biophys. Res. Commun. 96:953–960.

    Google Scholar 

  42. U'Prichard, D. C. 1984. Biochemical characteristics and regulation of brain α2-adrenoceptors. Pages 55–75,in Salama, A. I. (ed.)), Presynaptic modulation of postsynaptic receptors in mental diseases, Ann. N.Y. Acad. Sci. Vol. 430, Plenum Press, New York.

    Google Scholar 

  43. Vohra, M. M., andChaudry, A. 1984. Antagonism by the tetramine disulfide benextramine of the inhibitory effects mediated by prejunctional alpha2-adrenoceptors and by postjunctional histamine H2 receptors in the mouse vas deferens. Can. J. Physiol. Pharmacol. 62:1147–1151.

    Google Scholar 

  44. Woodcock, E. A., andMurley, B. 1982. Increased central α2-adrenergic receptors measured with [3H]-yohimbine in the presence of sodium ion and guanylnucleotides. Biochem. Biophys. Res. Commun. 105:252–258.

    Google Scholar 

  45. Zitwin, J. A., andWaud, D. R. 1982. How to analyze binding, enzyme and uptake data: the simplest case, a single phase. Life Sci. 30:1407–1422.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reader, T.A., Brière, R. & Grondin, L. Alpha-1 and alpha-2 adrenoceptor binding in cerebral cortex: Role of disulfide and sulfhydryl groups. Neurochem Res 11, 9–27 (1986). https://doi.org/10.1007/BF00965161

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00965161

Keywords

Navigation