Skip to main content
Log in

Distance distributions and dynamics of a zinc finger peptide from fluorescence resonance energy transfer measurements

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Time-resolved fluorescence resonance energy transfer (FRET) measurements were used to measure distance distributions and intramolecular dynamics (site-to-site diffusion) of a 28-residue single-domain zinc finger peptide in the absence and presence of zinc ion. Energy transfer was measured between TRP14 and a N-terminal DNS group. As expected, the TRP-to-DNS distance distribution for zinc-bound peptide is shorter and narrower (R av=11.2 Å,hw=2.8 Å) than the metal-free peptide (R av=20.1 Å,hw=14.5 Å). The degree of mutual donor-to-acceptor diffusion (D) was also determined for these distributions. For zinc-bound peptide there is no detectible diffusion (D≤0.2 Å2/ns), whereas for metal-free peptide a considerable amount of motion is occurring between the donor and the acceptor (D=12 Å2/ns). These results indicate that the zinc-bound peptide folds into a unique, well-defined conformation, whereas the metal-free conformation is flexible and rapidly changing. The absence of detectible mutual site-to-site diffusion between the donor and the acceptor in the metal-bound zinc finger peptide indicates that intramolecular motion is essentially frozen out, on the FRET time scale, as a consequence of zinc coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Miller, A. D. McLachlan, and A. Klug (1985)EMBO J. 4, 1609–1614.

    PubMed  Google Scholar 

  2. R. S. Brown, C. Sander, and P. Argos (1985)FEBS Lett. 186, 271–274.

    PubMed  Google Scholar 

  3. A. D. Frankel, J. M. Berg, and C. O. Pabo (1987)Proc. Natl. Acad. Sci. USA 84, 4841–4845.

    PubMed  Google Scholar 

  4. P. F. Johnson and S. L. McKnight (1989)Annu. Rev. Biochem. 58, 799–839.

    PubMed  Google Scholar 

  5. G. Párraga, S. J. Horvath, A. Eisen, W. E. Taylor, L. Hood, E. T. Young, and R. E. Klevit (1988)Science 241, 1489–1492.

    PubMed  Google Scholar 

  6. M. S. Lee, G. P. Gippert, K. V. Soman, D. A. Case, and P. E. Wright (1989)Science 245, 635–637.

    PubMed  Google Scholar 

  7. G. Párraga, S. Horvath L. Hood, E. T. Young, and R. E. Klevit (1990)Proc. Natl. Acad. Sci. USA 87, 137–141.

    PubMed  Google Scholar 

  8. R. E. Klevit, J. R. Herriott, and S. J. Horvath (1990),Proteins Struct. Funct. Genet. 7, 215–226.

    PubMed  Google Scholar 

  9. M. A. Weiss, K. A. Mason, C. E. Dahl, and H. T. Keutmann (1990)Biochemistry 29, 5660–5664.

    PubMed  Google Scholar 

  10. J. G. Omichinski, G. M. Clore, E. Appella, K. Sakaguchi and A. M. Gronenborn (1990)Biochemistry 29, 9324–9334.

    PubMed  Google Scholar 

  11. M. A. Weiss and H. T. Keutmann (1990)Biochemistry 29, 9808–9813.

    PubMed  Google Scholar 

  12. D. Neuhaus, Y. Nekaseko, K. Nagai, and A. Klug (1990)FEBS Lett. 626, 179–184.

    Google Scholar 

  13. M. Kochoyan, T. F. Havel, D. Nguyen, C. E. Dahl, H. T. Keutmann, and M. A. Weiss (1991)Biochemistry 30, 3371–3386.

    PubMed  Google Scholar 

  14. M. Kochoyan, H. T. Keutmann, and M. A. Weiss (1991)Biochemistry 30, 7063–7072.

    PubMed  Google Scholar 

  15. M. S. Lee, J. M. Gottesfeld, and P. E. Wright (1991)FEBS Lett. 279, 289–294.

    PubMed  Google Scholar 

  16. M. Kochoyan, H. T. Keutmann, and M. A. Weiss (1991)Biochemistry 30, 9396–9402.

    PubMed  Google Scholar 

  17. B. A. Krizek, B. T. Amann, V. J. Kilfoil, D. L. Merkle, and J. M. Berg (1991)J. Am. Chem. Soc. 113, 4518–4523.

    Google Scholar 

  18. J. M. Berg (1988)Proc. Natl. Acad. Sci. USA 85, 99–102.

    PubMed  Google Scholar 

  19. N. P. Pavletich and C. O. Pabo (1991)Science 252, 809–817.

    PubMed  Google Scholar 

  20. E. Haas, H. Wilchek, E. Katchalski-Katzir, and I. Z. Steinberg (1975)Proc. Natl. Acad. Sci. USA 72, 1807–1811.

    PubMed  Google Scholar 

  21. E. Haas, E. Katchalski-Katzir, and I. Z. Steinberg (1978)Biopolymers 17, 11–31.

    Google Scholar 

  22. E. Haas and I. Z. Steinberg (1984)Biophys. J. 46, 429–437.

    PubMed  Google Scholar 

  23. D. Amir and E. Haas (1986)Biopolymers 25, 235–240.

    PubMed  Google Scholar 

  24. J. R. Lakowicz, M. L. Johnson, W. Wiczk, A. Bhat, and R. F. Steiner (1987)Chem. Phys. Lett. 138, 587–593.

    Google Scholar 

  25. J. R. Lakowicz, I. Gryczynski, H. C. Cheung, C. K. Wang, and M. L. Johnson (1988)Biopolymers 27, 821–830.

    PubMed  Google Scholar 

  26. J. R. Lakowicz, I. Gryczynski, H. C. Cheung, C. K. Wang, M. L. Johnson, and N. Joshi (1988)Biochemistry 27, 9149–9160.

    PubMed  Google Scholar 

  27. J. M. Beechem and E. Haas (1989)Biophys. J. 55, 1225–1236.

    PubMed  Google Scholar 

  28. J. R. Lakowicz, I. Gryczynski, W. Wiczk, G. Laczko, F. G. Prendergast, and M. L. Johnson (1990)Biophys. Chem. 36, 99–115.

    PubMed  Google Scholar 

  29. E. Haas, C. A. McWherter, and H. A. Scheraga (1988)Biopolymers 27, 1–21.

    PubMed  Google Scholar 

  30. J. R. Lakowicz, J. Kuśba, W. Wiczk, I. Gryczynski, and M. L. Johnson (1990)Chem. Phys. Lett. 173, 319–326.

    Google Scholar 

  31. J. R. Lakowicz, J. Kuśba, I. Gryczynski, W. Wiczk, H. Szmacinski, and M. L. Johnson (1991)J. Phys. Chem. 95, 9654–9660.

    Google Scholar 

  32. J. R. Lakowicz, J. Kuśba, W. Wiczk, I. Gryczynski, H. Szmacinski, and M. L. Johnson (1991)Biophys. Chem. 39, 79–84.

    PubMed  Google Scholar 

  33. J. R. Lakowicz, J. Kuśba, H. Szmacinski, I. Gryczynski, P. S. Eis, W. Wiczk, and M. L. Johnson (1991)Biopolymers 31, 1363–1378.

    PubMed  Google Scholar 

  34. L. Stryer (1978)Annu. Rev. Biochem. 47, 819–846.

    PubMed  Google Scholar 

  35. J. Kuśba and J. R. Lakowicz (1993)Methods Enzymology; Numerical Computer Methods, Part B, in press.

  36. M. L. Johnson (1985)Anal. Biochem. 148, 471–478.

    PubMed  Google Scholar 

  37. M. Straume, S. G. Frasier-Cadoret, and M. L. Johnson (1991) in J. R. Lakowicz (Ed.),Topics in Fluorescence Spectroscopy, Vol. 2. Principles, Plenum Press, New York, pp. 177–240.

    Google Scholar 

  38. J. R. Lakowicz, E. Gratton, G. Laczko, H. Cherek, and M. Limkeman (1984)Biophys. J. 46, 463–477.

    PubMed  Google Scholar 

  39. E. Gratton, J. R. Lakowicz, B. Maliwal, H. Cherek, G. Laczko, and M. Limkeman (1984)Biophys. J. 46, 479–486.

    PubMed  Google Scholar 

  40. P. S. Eis and J. R. Lakowicz (1992) Time-resolved laser spectroscopy in biochemistry III.SPIE 1640, 532–541.

    Google Scholar 

  41. R. F. Chen (1967)Anal. Lett. 1, 35–42.

    Google Scholar 

  42. J. R. Lakowicz, G. Laczko, and I. Gryczynski (1986)Rev. Sci. Instrum. 57, 2499–2508.

    Google Scholar 

  43. J. R. Lakowicz, I. Gryczynski, J. Kuśba, W. Wiczk, H. Szmacinski, and M. L. Johnson, unpublished observation.

  44. P. S. Kim and R. L. Baldwin (1982)Annu. Rev. Biochem. 51, 459–489.

    PubMed  Google Scholar 

  45. P. S. Kim and R. L. Baldwin (1990)Annu. Rev. Biochem.,59, 631–660.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Barbara D. Wells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eis, P.S., Kuśba, J., Johnson, M.L. et al. Distance distributions and dynamics of a zinc finger peptide from fluorescence resonance energy transfer measurements. J Fluoresc 3, 23–31 (1993). https://doi.org/10.1007/BF00865286

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00865286

Key Words

Navigation