Skip to main content
Log in

Distance distributions recovered from steady-state fluorescence measurements on thirteen donor-acceptor pairs with different Förster distances

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The end-to-end distance distribution of a flexible molecule was recovered from steady-state fluorescence energy transfer measurements using the method suggested by Cantor and Pechukas (Proc. Natl. Acad. Sci. USA 68, 2099–2101, 1971). In this method, the Förster distance (R 0) is varied by attaching different donor-acceptor (D-A) pairs to the flexible linker of interest. Distance distributions are then recovered from energy transfer efficiency measurements on the set of D-A pairs with differentR 0 values. Thirteen D-A pair compounds were synthesized withR 0 values ranging from 6 to 32 Å. Each compound contained a tryptamine donor linked by an alkyl chain (∼10 carbons) to 1 of 13 acceptors. Using these compounds, we have experimentally confirmed the Cantor and Pechukas method for recovering distance distributions. The measured transfer efficiencies, as a function ofR 0, were fit to the transfer efficiencies predicted for both Gaussian and skewed Gaussian distance distributions. The data support the existence of a skewed Gaussian distribution, and we believe that this is the first experimental observation of an asymmetric distribution for a flexible molecule using fluorescence resonance energy transfer measurements. Finally, the experimentally recovered distance distribution was found to be in good agreement with the distribution predicted from the rotational isomeric state model of Flory (Statistical Mechanics of Chain Molecules, John Wiley & Sons, New York, 1969, Chaps. 1, 3, and 5) but not with the predicted distribution for a freely rotating or freely jointed chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. R. Cantor and P. Pechukas (1971)Proc. Natl. Acad. Sci. USA 68, 2099–2101.

    Google Scholar 

  2. P. Flory (1969)Statistical Mechanics of Chain Molecules, John Wiley & Sons, New York, Chaps. 1, 3, and 5.

    Google Scholar 

  3. I. Gryczynski, W. Wiczk, M. L. Johnson, and J. R. Lakowicz (1988)Chem. Phys. Lett. 145, 439–446.

    Google Scholar 

  4. I. Gryczynski, W. Wiczk, M. L. Johnson, H. C. Cheung, C. K. Wang, and J. R. Lakowicz (1988)Biophys. J. 54, 577–586.

    Google Scholar 

  5. J. R. Lakowicz, M. L. Johnson, W. Wiczk, A. Bhat, and R. F. Steiner (1987)Chem. Phys. Lett. 138, 587–593.

    Google Scholar 

  6. J. R. Lakowicz, I. Gryczynski, H. C. Cheung, C. K. Wang, and M. L. Johnson (1988)Biopolymers 27, 821–830.

    Google Scholar 

  7. J. R. Lakowicz, I. Gryczynski, H. C. Cheung, C. K. Wang, M. L. Johnson, and N. Joshi (1988)Biochemistry 27, 9149–9159.

    Google Scholar 

  8. S. Albaugh and R. F. Steiner (1989)J. Phys. Chem. 93, 8013–8016.

    Google Scholar 

  9. R. D. Remington and M. A. Schork (1985)Statistics with Analications to the Biological and Health Sciences, Prentice-Hall, Englewood Cliffs, NJ, Chap. 2, p. 14.

    Google Scholar 

  10. E. Haas, C. A. McWherter, and H. A. Scheraga (1988)Biopolymers 27, 1–21.

    Google Scholar 

  11. N. A. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller (1953)J. Chem. Phys. 21, 1087–1092.

    Google Scholar 

  12. S. Prémilat and J. Hermans Jr. (1973)J. Chem. Phys. 59, 2602–2612.

    Google Scholar 

  13. B. Valeur, J. Mugnier, J. Pouget, J. Bourson, and F. Santi (1989)J. Phys. Chem. 93, 6073–6079.

    Google Scholar 

  14. E. Hardin Strickland, J. Horwitz, E. Kay, L. M. Shannon, M. Wilchek, and C. Billups (1971)Biochemistry 10, 2631–2638.

    Google Scholar 

  15. K. Clausen, M. Thorsen, and S.-O. Lawesson (1982)Chem. Scripta 20, 14–18.

    Google Scholar 

  16. K. Clausen, M. Thorsen, and S.-O. Lawesson (1981)Tetrahedron 37, 3635–3639.

    Google Scholar 

  17. D. W. Brown, M. M. Campbell, and C. V. Walker (1983)Tetrahedron 39, 1075–1083.

    Google Scholar 

  18. M. Bodanszky and A. Bodanszky (1984)The Practice of Peptide Synthesis, Springer-Verlag, Berlin, Chap. 1A, p. 26.

    Google Scholar 

  19. R. F. Chen (1967)Anal. Biochem. 1, 35–42.

    Google Scholar 

  20. J. N. Demas and A. W. Adamson (1973)J. Am. Chem. Soc. 95, 5159–5168.

    Google Scholar 

  21. J. R. Lakowicz, J. Kusba, W. Wiczk, and I. Gryczynski (1990)Chem. Phys. Lett. 173, 319–326.

    Google Scholar 

  22. J. R. Lakowiczet al., unpublished observations.

  23. A. Abe, R. C. Jernigan, and P. J. Flory (1966)J. Am. Chem. Soc. 88, 631–639.

    Google Scholar 

  24. A. Abe and J. E. Mark (1976)J. Am. Chem. Soc. 98, 6468–6476.

    Google Scholar 

  25. E. Riande and J. Guzman (1985)J. Polym. Sci. Polym. Phys. Ed. 23, 1235–1245.

    Google Scholar 

  26. W. Mattice, personal communication.

  27. P. R. Bevington (1969)Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York, pp. 200–201, 318.

    Google Scholar 

  28. 66th Handbook of Chemistry and Physics (1985) CRC Press, Boca Raton, FL, pp. F-165–F-166.

  29. R. W. G. Wyckoff (1966)Crystal Structures, John Wiley & Sons, New York, pp. 53, 82, 288, 682.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiczk, W., Eis, P.S., Fishman, M.N. et al. Distance distributions recovered from steady-state fluorescence measurements on thirteen donor-acceptor pairs with different Förster distances. J Fluoresc 1, 273–286 (1991). https://doi.org/10.1007/BF00865251

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00865251

Key Words

Navigation