Skip to main content
Log in

Renal metabolism and acute renal failure

  • Invited Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

We briefly review what appear to be the most important elements responsible for renal cell injury during and after oxygen deprivation. Recent studies in numerous laboratories have vastly improved our understanding of the changes in cell function that occur during ischemia and yet, the underlying mechanisms by which tubule damage and cell death occur remain elusive. We attempt to separate the effects that occur during ischemia or anoxia from those occurring during reperfusion (reoxygenation). These are not always separable, especially because it appears that ischemia initiates a series of complex events that may only become manifested during reperfusion. Ischemia-induced renal dysfunctions are clearly multifactorial events that will require major efforts to unravel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tanner GA (1985) Experimental models of acute tubule necrosis. In: Ash SR, Thronhill JA (eds) Handbook of animal models of renal failure. CRC Press, Boca Raton, p 109

    Google Scholar 

  2. Mandel LJ (1986) Primary active sodium transport, oxygen consumption, and ATP: coupling and regulation. Kidney Int 29: 3–9

    PubMed  Google Scholar 

  3. Madias NE, Harrington JT (1983) Postischemic acute renal failure. In: Brenner BM, Lazarus JM (eds) Acute renal failure. WB Saunders, Philadelphia, p 235

    Google Scholar 

  4. Paller MS, Hoidal JR, Ferris TG (1984) Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest 74: 1156–1164

    PubMed  Google Scholar 

  5. Sumpio BE, Chaudry IH, Clemens MG, Baue AE (1984) Accelerated functional recovery of isolated rat kidney with ATP-MgCl2 after warm ischemia. Am J Physiol 247: R1047-R1053

    PubMed  Google Scholar 

  6. Wirthensohn G, Guder WG (1986) Renal substrate metabolism. Physiol Rev 66: 469–497

    PubMed  Google Scholar 

  7. Kurokawa K, Nagami GT, Yamaguchi DT (1985) Transport and substrate metabolism of the kidney. In: Kinne R (ed) Renal biochemistry cells, membranes, molecules. Elsevier, Amsterdam, p 175

    Google Scholar 

  8. Cohen JJ (1979) Is the function of the renal papilla coupled exclusively to an anaerobic pattern of metabolism? Am J Physiol 236: F423-F433

    PubMed  Google Scholar 

  9. Harris SI, Patton L, Barrett L, Mandel LJ (1982) (Na+, K+)-ATPase kinetics within the intact renal cell. J Biol Chem 257: 6996–7002

    PubMed  Google Scholar 

  10. Chamberlin ME, Mandel LJ (1986) Substrate support of medullary thick ascending limb oxygen consumption. Am J Physiol 251: F758-F763

    PubMed  Google Scholar 

  11. Brezis M, Rosen S, Silva P, Epstein FH (1984) Renal ischemia: a new perspective. Kidney Int 26: 375–383

    PubMed  Google Scholar 

  12. Takano T, Soltoff SP, Murdaugh S, Mandel LJ (1985) Intracellular respiratory dysfunction and cell injury in short-term anoxia of rabbit renal proximal tubules. J Clin Invest 76: 2377–2384

    PubMed  Google Scholar 

  13. Weinberg JM (1985) Oxygen deprivation-induced injury to isolated rabbit kidney tubules. J Clin Invest 76: 1193–1208

    PubMed  Google Scholar 

  14. Weinberg JM, Humes HD (1986) Increases of cell ATP produced by exogenous adenine nucleotides in isolated rabbit kidney tubules. Am J Physiol 250: F720-F733

    PubMed  Google Scholar 

  15. Franke H, Gronow G (1986) Effects of oxygen tension on kidney cellular energetics. In: Fisher JW (ed) Kidney hormones. Academic Press, London, p 177

    Google Scholar 

  16. Chamberlin ME, Mandel LJ (1987) Na,K-ATPase activity in the medullary thick ascending limb during short-term anoxia. Am J Physiol 252: F838-F843

    PubMed  Google Scholar 

  17. Wilson PD, Schrier RW (1986) Nephron segment and calcium as determinants of anoxic cell death in renal cultures. Kidney Int 29: 1172–1179

    PubMed  Google Scholar 

  18. Venkatachalam MA, Levinsky NG, Jones DB (1984) Proximal tubular brush border alterations in experimental acute renal failure. In: Solez K, Whelton A (eds) Acute renal failure. Marcel Dekker, New York, p 97

    Google Scholar 

  19. Mason J (1986) The pathophysiology of ischemic acute renal failure. Renal Physiol 9: 129–147

    PubMed  Google Scholar 

  20. Hanley MJ (1980) Isolated nephron segments in a rabbit model of ischemic acute renal failure. Am J Physiol 293: F17-F23

    Google Scholar 

  21. Herminghuysen D, Welbourne CJ, Welbourne TC (1985) Renal sodium reabsorption, oxygen consumption, and gamma-glutamyltransferase excretion in the postischemic rat kidney. Am J Physiol 248: F804-F809

    PubMed  Google Scholar 

  22. Holloway JC, Phifer T, Henderson R, Welbourne TC (1986) Renal acid base metabolism after ischemia. Kidney Int 29: 989–994

    PubMed  Google Scholar 

  23. Wilson DR, Arnold PE, Burke TJ, Schrier RW (1984) Mitochondrial calcium accumulation and respiration in ischemic acute renal failure in the rat. Kidney Int 25: 519–526

    PubMed  Google Scholar 

  24. Zager RA, Baltes LA, Sharma HM, Jurkowitz MS (1984) Responses of the ischemic acute renal failure kidney to additional ischemic events. Kidney Int 26: 689–700

    PubMed  Google Scholar 

  25. Johnston PA, Rennke H, Levinsky NG (1984) Recovery of proximal tubular function from ischemic injury. Am J Physiol 246: F159-F166

    PubMed  Google Scholar 

  26. Mandel LJ, Takano T, Soltoff SP, Murdaugh S (1987) Mechanisms whereby exogenous adenine nucleotides improve rabbit renal proximal function during and after anoxia. J Clin Invest (in press)

  27. Hems DA, Brosnan JT (1970) Effects of ischemia on content of metabolites in rat liver and kidney in vivo. Biochem J 120: 105–111

    PubMed  Google Scholar 

  28. Mason J, Beck F, Dörge A, Rick R, Thurau K (1981) Intracellular electrolyte composition following renal ischemia. Kidney Int 20: 61–70

    PubMed  Google Scholar 

  29. Soltoff SP, Mandel LJ (1984) Active ion transport in the renal proximal tubule. III. The ATP dependence of the sodium pump. J Gen Physiol 84: 643–662

    PubMed  Google Scholar 

  30. Pfaller W (1982) Structure function correlation on rat kidney. Adv Anat Embryol Cell Biol 70: 1–106

    PubMed  Google Scholar 

  31. Needleman P, Passonneau JV, Lowry OH (1968) Distribution of glucose and related metabolites in rat kidney. Am J Physiol 215: 655–659

    PubMed  Google Scholar 

  32. Gronow GH, Cohen JJ (1984) Substrate support for renal functions during hypoxia in the perfused rat kidney. Am J Physiol 247: F618-F631

    PubMed  Google Scholar 

  33. Buhl R (1982) Purine metabolism in ischemic kidney tissue. Dan Med Bull 29: 1–26

    PubMed  Google Scholar 

  34. Arnold PE, Van Putten VJ, Lumlertgul D, Burke TJ, Schrier RW (1986) Adenine nucleotide metabolism and mitochondrial Ca2+ transport following renal ischemia. Am J Physiol 250: F357-F363

    PubMed  Google Scholar 

  35. Siegel NJ, Gaudio KM, Cooper K, Thulin G, Arison M, Stromski M, Kashgarian M, Shulman RG (1985) Accelerating recovery from acute renal failure: Exogenous metabolite augmentation. Mol Physiol 8: 593–598

    Google Scholar 

  36. Lehninger AL (1975) Biochemistry, 2nd edn. Worth, New York, p 518

    Google Scholar 

  37. Hartung KH, Jung K, Minda R, Kunz W (1985) Mitochondrial respiratory function as indicator of the ischemic injury at the rat kidney. Biomed Biochem Acta 44: 1435–1443

    Google Scholar 

  38. Chance B, Williams CM (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol Relat Areas Mol Biol 17: 65–134

    Google Scholar 

  39. Harris SI, Balaban RS, Barrett L, Mandel LJ (1981) Mitochondrial respiratory capacity and Na+- and K+-dependent adenosine triphosphatase mediated ion transport in the intact renal cell. J Biol Chem 256: 10319–10328

    PubMed  Google Scholar 

  40. Miyahara M, Okimasu E, Mikasa H, Terada S, Kodama H, Utsumi K (1984) Improvement of the anoxia-induced mitochondrial dysfunction by membrane modulation. Arch Biochem Biophys 233: 139–150

    PubMed  Google Scholar 

  41. Weinberg JM, Humes HD (1985) Calcium transport and inner mitochondrial membrane damage in renal cortical mitochondria. Am J Physiol 248: F876-F889

    PubMed  Google Scholar 

  42. Mandel LJ, Takano T, Soltoff SP, Jacobs WR, LeFurgey A, Ingram P (1987) Multiple roles of calcium in anoxic-induced injury in renal proximal tubules. In: Eaton DC, Mandel LJ (eds) Cellular calcium and the control of membrane transport. Rockefeller Press, New York (in press)

    Google Scholar 

  43. Humes HD (1986) Role of calcium in pathogenesis of acute renal failure. Am J Physiol 250: F579-F589

    PubMed  Google Scholar 

  44. Borle AB, Freudenrich CC, Snowdowne KW (1986) A simple method for incorporating aequorin into mammalian ceus. Am J Physiol 251: C323-C326

    PubMed  Google Scholar 

  45. Burke TJ, Arnold PE, Gordon JA, Bulger RE, Dobyan DC, Schrier RW (1984) Protective effect of intrarenal calcium membrane blockers before or after renal ischemia: functional, morphological and mitochondrial studies. J Clin Invest 74: 1830–1841

    PubMed  Google Scholar 

  46. Matthys E, Patel Y, Kreisberg J, Stewart JH, Venkatachalam M (1984) Lipid alterations induced by renal ischemia: pathogenic factor in membrane damage. Kidney Int 26: 153–161

    PubMed  Google Scholar 

  47. Siegel MB, Lowenstein LM, Levinsky NG (1979) Choline uptake into renal phospholipids following renal ischemia in rats. Circ Res 44: 62–67

    PubMed  Google Scholar 

  48. Paddock JK, Lada W, Lowenstein LM (1981) Regeneration of the renal brush border after renal ischemia in rats. Am J Physiol 241: F28-F33

    PubMed  Google Scholar 

  49. Smith MW, Collan Y, Kahng M, Trump BF (1980) Changes in mitochondrial lipids of rat kidney during ischemia. Biochim Biophys Acta 618: 192–201

    PubMed  Google Scholar 

  50. Molitoris BA, Wilson PD, Schrier RW, Simon FR (1985) Ischemia induced partial loss of surface membrane polarity and accumulation of putative calcium ionophores. J Clin Invest 76: 2097–2105

    PubMed  Google Scholar 

  51. Das DK, Engleman RM, Rousou JA, Breyer RH, Otani H, Lemeshow S (1986) Role of membrane phospholipids in myocardial injury induced by ischemia and reperfusion. Am J Physiol 251: H71-H79

    PubMed  Google Scholar 

  52. Chien KR, Abrams J, Serroni A, Martin JT, Farber JL (1978) Accelerated phospholipid degradation and associated membrane dysfunction in irreversible ischemia liver cell injury. J Biol Chem 253: 4809–4817

    PubMed  Google Scholar 

  53. McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312: 159–163

    PubMed  Google Scholar 

  54. Bulkley GB (1983) The role of oxygen free radicals in human disease processes. Surgery 94: 407–411

    PubMed  Google Scholar 

  55. Morrison AR, Pascoe N, Tauk K, Kennerly D (1984) Biochemical alterations of membrane lipids associated with renal injury. Fed Proc 43: 2811–2814

    PubMed  Google Scholar 

  56. Morgan EG (1926) The distribution of xanthine oxidase. I. Biochem J 20: 1282–1291

    Google Scholar 

  57. Paller MS, Hebbel RP (1986) Ethane production as a measure of lipid peroxidation after renal ischemia. Am J Physiol 251: F839-F843

    PubMed  Google Scholar 

  58. Baker GL, Corry RJ, Autor AP (1985) Oxygen free radical induced damage in kidneys subjected to warm ischemia and reperfusion. Ann Surg 202: 628–641

    PubMed  Google Scholar 

  59. Ouriel K, Smedira NG, Ricotta JJ (1985) Protection of the kidney after temporary ischemia: free radical scavengers. J Vasc Surg 2: 49–53

    PubMed  Google Scholar 

  60. Hansson R, Jonsson O, Lundstam S, Pettersson S, Schersten T, Waldenstrom J (1983) Effects of free radical scavengers on renal circulation after ischaemia in the rabbit. Clin Sci 65: 605–610

    PubMed  Google Scholar 

  61. Paller MS (1986) Hypothyroidism protects against free radical damage in ischemic acute renal failure. Kidney Int 29: 1162–1166

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickman, K.G., Jacobs, W.R. & Mandel, L.J. Renal metabolism and acute renal failure. Pediatr Nephrol 1, 359–366 (1987). https://doi.org/10.1007/BF00849235

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00849235

Key words

Navigation