Skip to main content
Log in

Transport across the bacterial outer membrane

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Diffusion of small molecules across the outer membrane of gram-negative bacteria may occur through protein channels and through lipid bilayer domains. Among protein channels, many examples of trimeric porins, which produce water-filled diffusion channels, are known. Although the channels are nonspecific, the diffusion rates of solutes are often drastically affected by their gross physicochemical properties, such as size, charge, or lipophilicity, because the channel has a dimension not too different from that of the diffusing solutes. In the last few years, the structures of three such porins have been solved by X-ray crystallography. It is now known that a monomer unit traverses the membrane 16 times as β-strands, and one of the external loop folds back into the channel to produce a narrow constriction. Most of the static properties of the channel, such as the pore size and the position of the amino acids that produce the constriction, can now be explained by the three-dimensional structure. Controversy, however, still surrounds the issue of whether there are dynamic modulation of the channel properties in response to pH, ionic strength, or membrane potential, and of whether such responses are physiological. More recently, two examples of monomeric porins have been identified. These porins allow a very slow diffusion of solutes, but the reason for this low permeability is still unclear. Finally, channels with specific binding sites facilitate the diffusion of specific classes of nutrients, often those compounds that are too large to penetrate rapidly through the porin channels. Lipid bilayers in the outer membrane were shown to be perhaps 50- to 100-fold less permeable to uncharged, lipophilic molecules in comparison with the bilayers made of the usual glycerophospholipids. This is caused by the presence of a lipopolysaccharide leaflet in the bilayer, and more specifically, by the presence of a larger number of fatty acids in each lipid molecule, and by the absence of unsaturated fatty acids in the lipopolysaccharide structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer, K., Struyve, M., Bosch, D., Benz, R., and Tommassen, J. (1989).K. Biol. Chem. 264 16393–16398.

    Google Scholar 

  • Bellido, F., Martin, N. L., Siehnel, R. J., and Hancock, R. E. W. (1992).J. Bacteriol. 174 5196–5203.

    Google Scholar 

  • Benson, S. A., Occi, J. L. L., and Sampson, B. A. (1988).J. Mol. Biol. 203 961–970.

    Google Scholar 

  • Benz, R., Janko, K., and Lauger, P. (1979).Biochim. Biophys. Acta 551 238–247.

    Google Scholar 

  • Benz, R., Darveau, R. P., and Hancock, R. E. W. (1984).Eur. J. Biochem. 140 319–324.

    Google Scholar 

  • Benz. R., Schmidt, A., and Vos-Scheperkeuter, G. H. (1987).J. Membr. Biol. 100 21–29.

    Google Scholar 

  • Berrier, C., Coulombe, A., Houssin, C., and Ghazi, A. (1989).FEBS Lett. 259 27–32.

    Google Scholar 

  • Blachly-Dyson, E., Peng, S., Colombini, M., and Forte, M. (1990)Science 247 1233–1236.

    Google Scholar 

  • Bremer, E., Middendorf, J., Martinussen, J., and Valentin-Hansen, P. (1990).Gene 96 59–65.

    Google Scholar 

  • Buechner, M., Delcour, A. H., Martinac, B., Adler, J., and Kung, C. (1990).Biochim. Biophys. Acta 1024 111–121.

    Google Scholar 

  • Cowan, S. W., Schirmer, T., Rummel, G., Steiert, M., Ghosh, R., Pauptit, R. A., Jansonius, J. N., and Rosenbusch, J. P. (1992).Nature (London),358 727–733.

    Google Scholar 

  • Death, A., Notley, L., and Ferenci, T. (1993).J. Bacteriol. 175 1475–1483.

    Google Scholar 

  • Ferenci, T., and Lee, K.-S. (1982).J. Mol. Biol. 160 431–444.

    Google Scholar 

  • Ferenci, T., Saurin, W., and Hofnung, M. (1988).J. Mol. Biol. 201 493–496.

    Google Scholar 

  • Forst, D., Schulein, K., Wacker, T., Diedrichs, K., Kreutz, W., Benz, R., and Welte, W. (1993).J. Mol. Biol. 229 258–262.

    Google Scholar 

  • Freundlieb, S., Ehmann, U., and Boos, W. (1988).J. Biol. Chem. 263 314–320.

    Google Scholar 

  • Garavito, R. M., and Rosenbusch, J. P. (1980).J. Cell. Biol. 86 327–329.

    Google Scholar 

  • Hancock, R. E. W., and Benz, R. (1986).Biochim. Biophys. Acta 860 699–707.

    Google Scholar 

  • Hancock, R. E. W., and Carey, A. M. (1979).J. Bacteriol. 140 902–910.

    Google Scholar 

  • Hancock, R. E. W., Poole. K., and Benz, R. (1982).J. Bacteriol. 150 730–738.

    Google Scholar 

  • Hancock, R. E. W., Egli, C., Benz, R., and Siehnel, R. J. (1992).J. Bacteriol. 174 471–476.

    Google Scholar 

  • Heine, H.-G., Francis, G., Lee, K.-S., and Ferenci, T. (1988).J. Bacteriol. 170 1730–1738.

    Google Scholar 

  • Jap, B. K., and Walian, P. J. (1990).Q. Rev. Biophys. 23 367–403.

    Google Scholar 

  • Jap, B. K., Walian, P. J., and Gehring, K. (1991).Nature (London),350 167–170.

    Google Scholar 

  • Labischinski, H., Barnickel, G., Bradaczek, H., Naumann, D., Rietschel, E. T., and Giesbrecht, P. (1985).J. Bacteriol. 169 9–20.

    Google Scholar 

  • Labischinski, H., Naumann, D., Shulz, C., Kusumoto, S., Shiba, T., Rietschel, E. T., and Giesbrecht, P. (1989).Eur. J. Biochem. 179 659–665.

    Google Scholar 

  • Levy, S. B. (1992).Antimicrob. Agents Chemother. 36 695–703.

    Google Scholar 

  • Luckey, M., and Nikaido, H. (1980).Proc. Natl. Acad. Sci. USA 77 167–171.

    Google Scholar 

  • Maier, C., Bremer, E., Schmid, A., and Benz, R. (1988).J. Biol. Chem. 263 2493–2499.

    Google Scholar 

  • Martinac, B., Buechner, M., Delcour, A. H., Adler, J., and Kung, C. (1987).Proc. Natl. Acad. Sci. USA 84 2297–2301.

    Google Scholar 

  • Misra, R., and Benson, S. A. (1988).J. Bacteriol. 170 3611–3617.

    Google Scholar 

  • Nikaido, H. (1990). InMembrane Transport and Information Storage. Advances in Membrane Fluidity, Vol. 4 (Aloia, R. C., Curtain, C. C., and Gordon, L. M., eds.), Alan, R. Liss, New York, pp. 165–190.

    Google Scholar 

  • Nikaido, H. (1992).Mol. Microbiol. 6 435–442.

    Google Scholar 

  • Nikaido, H., and Vaara, M. (1985).Microbiol. Rev. 49 1–32.

    Google Scholar 

  • Nikaido, H., Takeuchi, Y., Ohnishi, S., and Nakae, T. (1977)Biochim. Biophys. Acta 465 152–164.

    Google Scholar 

  • Nikaido, H., Nikaido, K., and Harayama, S. (1991).J. Biol. Chem. 266 770–779.

    Google Scholar 

  • Nikaido, H., Kim, S.-H., and Rosenberg, E. Y. (1993).Mol. Microbiol. 8 1025–1030.

    Google Scholar 

  • Pauptit, R. A., Schirmer, T., Jansonius, J. N., Rosenbusch, J. P., Parker, M. W., Tucker, A. D., Tsernoglou, D., Weiss, M. S., and Schulz, G. E. (1991).J. Struct. Biol. 107 136–145.

    Google Scholar 

  • Plesiat, P., and Nikaido, H. (1992).Mol. Microbiol. 6 1323–1333.

    Google Scholar 

  • Quinn, J. P., Dudek, C. A., di Vicenzo, C. A., Lucks, D. A., and Lerner, S. A. (1986).J. Infect. Dis. 154 289–294.

    Google Scholar 

  • Rachel, R., Engel, A. M., Huber, R., Stetter, K.-O., and Baumeister, W. (1990).FEBS Lett. 262 64–68.

    Google Scholar 

  • Schiltz, E., Kreusch, A., Nestel, U., and Schulz, G. E. (1991).Eur. J. Biochem. 199 587–594.

    Google Scholar 

  • Schulein, K., Schmid, A., and Benz, R. (1991).Mol. Microbiol. 5 2233–2241.

    Google Scholar 

  • Sen, K., and Nikaido, H. (1990).Proc. Natl. Acad. Sci. USA 87 743–747.

    Google Scholar 

  • Sen, K., and Nikaido, H. (1991).J. Bacteriol. 173 926–928.

    Google Scholar 

  • Sen, K., Hellman, J., and Nikaido, H. (1988).J. Biol. Chem. 263 1182–1187.

    Google Scholar 

  • Stein, W. D. (1967).The Movement of Molecules across Cell Membranes. Academic Press, New York.

    Google Scholar 

  • Struyve, M., Visser, J., Adriaanse, H., Benz, R., and Tommassen, J. (1993).Mol. Microbiol. 7 131–140.

    Google Scholar 

  • Sugawara, E., and Nikaido, H. (1992).J. Biol. Chem. 267 2507–2511.

    Google Scholar 

  • Takeuchi, Y., and Nikaido, H. (1981).Biochemistry 20 523–529.

    Google Scholar 

  • Todt, J. C., Rocque, W. J., and McGroarty, E. J. (1992).Biochemistry 31 10471–10478.

    Google Scholar 

  • Trias, J., and Nikaido, H. (1990).J. Biol. Chem. 265 15680–15684.

    Google Scholar 

  • Trias, J., Rosenberg, E. Y., and Nikaido, H. (1988).Biochim. Biophys. Acta 938 493–496.

    Google Scholar 

  • Trias, J., Dufresne, J., Levesque, R. C., and Nikaido, H. (1989).Antimicrob. Agents Chemother. 33 1201–1206.

    Google Scholar 

  • Trias, J., Jarlier, V., and Benz, R. (1992).Science 258 1479–1481.

    Google Scholar 

  • Vaara, M. (1992).Microbiol. Rev. 56 395–411.

    Google Scholar 

  • Vaara, M. (1993).Antimicrob. Agents Chemother., in press.

  • Weiss, M. S., and Schulz, G. E. (1992).J. Mol. Biol. 227 493–509.

    Google Scholar 

  • Weiss, M. S., Abele, U., Weckesser, J., Welte, W., Shiltz, E., and Schulz, G. E. (1991).Science 254 1627–1629.

    Google Scholar 

  • Yoshimoto, T., Higashi, H., Kanatani, A., Lin, X.-S., Nagai, H., Oyama, H., Kurazono, K., and Tsuru, D. (1991).J. Bacteriol. 173 2173–2179.

    Google Scholar 

  • Yoshimura, F., and Nikaido, H. (1982).J. Bacteriol. 152 636–642.

    Google Scholar 

  • Zimmermann, W., and Rosselet, A. (1977).Antimicrob. Agents Chemother. 12 368–372.

    Google Scholar 

  • Zoratti, M., and Petronilli, V. (1988).FEBS Lett. 240 105–109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikaido, H. Transport across the bacterial outer membrane. J Bioenerg Biomembr 25, 581–589 (1993). https://doi.org/10.1007/BF00770245

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00770245

Key words

Navigation