Skip to main content
Log in

Insight into the active-site structure and function of cytochrome oxidase by analysis of site-directed mutants of bacterial cytochromeaa 3 and cytochromebo

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Cytochromeaa 3 ofRhodobacter sphaeroides and cytochromebo ofE. coli are useful models of the more complex cytochromec oxidase of eukaryotes, as demonstrated by the genetic, spectroscopic, and functional studies reviewed here. A summary of site-directed mutants of conserved residues in these two enzymes is presented and discussed in terms of a current model of the structure of the metal centers and evidence for regions of the protein likely to be involved in proton transfer. The model of ligation of the hemea 3 (oro)-CuB center, in which both hemes are bound to helix X of subunit I, has important implications for the pathways and control of electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alben, J. O., Moh, P. P., Fiamingo, F. G., and Altschuld, R. A. (1981).Proc. Natl. Acad. Sci. USA 78, 234–237.

    Google Scholar 

  • Albracht, S. P. J., van Verseveld, H. W., Hagen, W. R., and Kalkman, M. L. (1980).Biochim. Biophys. Acta 593, 173–186.

    Google Scholar 

  • Anraku, Y., and Gennis, R. B. (1987).Trend. Biochem. Sci. 12, 262–266.

    Google Scholar 

  • Au, D. C.-T., and Gennis, R. B., (1987).J. Bacteriol. 169, 3237–3242.

    Google Scholar 

  • Babcock, G. T., and Wikstrom, M. (1992).Nature (London),356, 301–309.

    Google Scholar 

  • Baker, G. M., Noguchi, M., and Palmer, G. (1987).J. Biol. Chem. 262, 595–604.

    Google Scholar 

  • Berry, E. A., and Trumpower, B. L. (1985).J. Biol. Chem. 260, 2458–2467.

    Google Scholar 

  • Bisson, R., Steffens, G. C. M., and Buse, G. (1982).J. Biol. Chem. 257, 6716–6720.

    Google Scholar 

  • Blair, D. F., Martin, C. T., Gelles, J., Wang, H., Brudvig, G. W., Stevens, T. H., and Chan, S. I. (1983).Chem. Scri. 21, 43–53.

    Google Scholar 

  • Brown, S., Moody, A. J., Jeal, A. E., Bourne, R. M., Mitchell, J. R., and Rich, P. R. (1992).EBEC 7, 39.

    Google Scholar 

  • Cao, Shapleigh, J., Gennis, R., Revzin, A., and Ferguson-Miller, S. (1991).Gene 101, 133–137.

    Google Scholar 

  • Cao, J., Hosler, J., Shapleigh, J., Revzin, A., and Ferguson-Miller, S. (1992).J. Biol. Chem. 267, 24273–24278.

    Google Scholar 

  • Caughey, W. S., Bayne, R. A. and McCoy, S. (1970)J. Chem. Soc. 950–951.

  • Chepuri, V., and Gennis, R. B. (1990).J. Biol. Chem. 265, 12978–12986.

    Google Scholar 

  • Chepuri, V., Lemieux, L., Hill, J., Alben, J. O., and Gennis, R. B. (1990a).Biochim. Biophys. Acta 1018, 124–127.

    Google Scholar 

  • Chepuri, V., Lemieux, L. J., Au, D. C.-T., and Gennis, R. B. (1990b).J. Biol. Chem. 265, 11185–11192.

    Google Scholar 

  • Cline, J., Reinhammar, B., Jensen, P., Venters, R., and Hoffman, B. M. (1983).J. Biol. Chem. 258, 5124–5128.

    Google Scholar 

  • Deisenhofer, J., and Michel, H. (1989).Science 245, 1463–1473.

    Google Scholar 

  • Einarsdóttir, O., Choc, M. G., Weldon, S., and Caughey, W. S. (1988).J. Biol. Chem. 263, 13641–13654.

    Google Scholar 

  • Erecinska, M., Wilson, D. F., and Blasie, J. K. (1979).Biochim. Biophys. Acta 545, 352–364.

    Google Scholar 

  • Feher, G., Allen, J. P., Okamura, M. Y., and Rees, D. C. (1989).Nature (London)339, 111–116.

    Google Scholar 

  • Fiamingo, F. G., Altschuld, R. A., Moh, P. P., and Alben, J. O. (1982).J. Biol. Chem. 257, 1639–1650.

    Google Scholar 

  • Fiamingo, F. G., Altschuld, R. A., and Alben, J. O. (1986).J. Biol. Chem. 261, 12976–12987.

    Google Scholar 

  • Fiamingo, F. G., Jung, D. W., and Alben, J. O. (1990).Biochemistry 29, 4627–4633.

    Google Scholar 

  • Finel, M. (1988).FEBS Lett. 236, 415–419.

    Google Scholar 

  • Gelles, J., Blair, D. F., and Chan, S. I. (1987).Biochim. Biophys. Acta 853, 205–236.

    Google Scholar 

  • Gennis, R. B. (1991).Biochim. Biophys. Acta 1058, 21–24.

    Google Scholar 

  • Georgiou, C., Cokic, P., Carter, K., Webster, D. A., and Gennis, R. B. (1988).Biochim. Biophys. Acta 933, 179–183.

    Google Scholar 

  • Haltia, T. (1992).Biochim. Biophys. Acta 1098, 343–350.

    Google Scholar 

  • Haltia, T., Saraste, M., and Wikström, M. (1991).EMBO J. 10, 2015–2021.

    Google Scholar 

  • Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. H. (1990).J. Mol. Biol. 213, 899–929.

    Google Scholar 

  • Hendler, R. W., Pardhasaradhi, K., Reynafarje, B., and Ludwig, B. (1991).Biophys. J. 60, 415–423.

    Google Scholar 

  • Hill, J., Goswitz, V. C., Calhoun, M., Garcia-Horsman, J. A., Lemieux, L., Alben, J. O., and Gennis, R. B. (1992).Biochemistry, in press.

  • Hosler, J., Fetter, J., Shapleigh, J., Espe, M., Thomas, J., Kim, Y., Gennis, R., Babcock, G., and Ferguson-Miller, S. (1992a).EBEC 7, 38.

    Google Scholar 

  • Hosler, J. P., Fetter, J., Tecklenberg, M. M. J., Espe, M., Lerma, C., and Ferguson-Miller, S. (1992b).J. Biol. Chem. 267, 24264–24272.

    Google Scholar 

  • Ishizuka, M., Machida, K., Shimada, S., Mogi, A., Tsuchiya, T., Ohmori, T., Souma, Y., Gonda, M. A., and Sone, N. (1990).J. Biochem. 108, 866–873.

    Google Scholar 

  • Kahlow, M. A., Zuberi, T. M., Gennis, R. B., and Loehr, T. M. (1991).Biochemistry 30, 11485–11489.

    Google Scholar 

  • Kita, K., Konishi, K., and Anraku, Y. (1984).J. Biol. Chem. 259, 3368–3374.

    Google Scholar 

  • Larsen, R. W., Pan, L.-P., Musser, S. M., Li, Z., and Chan, S. I. (1992).Proc. Natl. Acad. Sci. USA 89, 723–727.

    Google Scholar 

  • Lemieux, L. J., Calhoun, M. W., Thomas, J. W. Ingledew, W. J., and Gennis, R. B. (1992).J. Biol. Chem. 267, 2105–2113.

    Google Scholar 

  • Li, P. M., Gelles, J., Chan, S. I., Sullivan, R. J., and Scott, R. A. (1987).Biochemistry 26, 2091–2095.

    Google Scholar 

  • Matsushita, K., Patel, L., and Kaback, H. R. (1984).Biochemistry 23, 4703–4714.

    Google Scholar 

  • Minagawa, J., Mogi, T., Gennis, R. B., and Anraku, Y. (1992).J. Biol. Chem. 267, 2096–2104.

    Google Scholar 

  • Minghetti, K. C., Goswitz, V. C., Gabriel, N. E., Hill, J. J., Barassi, C., Georgiou, C. D., Chan, S. I., and Gennis, R. B. (1992).Biochemistry 31, 6917–6924.

    Google Scholar 

  • Mogi, T. and Anraku, Y. (1990). InInternational Symposium on Bioenergetics of Proton Pumps: Biochemistry, Cell Biology, and Molecular Pathology (Fuku, T., Futai, M., Maeda, M., Moriyama, Y., and Tanizawa, K., eds.), Osaka University Press, Osaka, Japan, pp. 96–99.

    Google Scholar 

  • Moody, A. J., Cooper, C. E., and Rich, P. E. (1991).Biochim. Biophys. Acta 1059, 189–207.

    Google Scholar 

  • Nicholls, P., and Sone, N. (1984).Biochim. Biophys. Acta 767, 240–247.

    Google Scholar 

  • Nobrega, M. P., Nobrega, F. G., and Tzagoloff, A. (1990).J. Biol. Chem. 265, 14220–14226.

    Google Scholar 

  • Otto, H., Marti, T., Holz, M., Mogi, T., Lindau, M., Khorana, H. G., and Heyn, M. P. (1989).Proc. Natl. Acad. Sci. USA 86, 9228–9232.

    Google Scholar 

  • Palmer, G., Babcock, G. T., and Vickery, L. E. (1976).Proc. Natl. Acad. Sci. USA 73, 2206–2210.

    Google Scholar 

  • Powers, L., Chance, B., Ching, Y., and Angiolillo, P. (1981).Biophys. J. 34, 465–498.

    Google Scholar 

  • Puustinen, A., and Wikström, M. (1991).Proc. Natl. Acad. Sci. USA 88, 6122–6126.

    Google Scholar 

  • Puustinen, A., Finel, M., Virkki, M., and Wikström, M. (1989).FEBS Lett. 249, 163–167.

    Google Scholar 

  • Puustinen, A., Finel, M., Haltia, T., Gennis, R. B., and Wikström, M. (1991).biochemistry 30, 3936–3942.

    Google Scholar 

  • Puustinen, A., Morgan, J. E., Verkhovsky, M., Thomas, J. W., Gennis, R. B., and Wikström, M. (1992).Biochemistry 31, 10363–10369.

    Google Scholar 

  • Raitio, M., Jalli, T., and Saraste, M. (1987).EMBO J. 6, 2825–2833.

    Google Scholar 

  • Salerno, J. C., Bolgiano, B., and Ingledew, W. J. (1989).FEBS Lett. 247, 101–105.

    Google Scholar 

  • Salerno, J. C., Bolgiano, B., Poole, R. K., Gennis, R. B., and Ingledew, W. J. (1990).J. Biol. Chem. 265, 4364–4368.

    Google Scholar 

  • Saraste, M. (1990).Q. Rev. Biophys. 23, 331–366.

    Google Scholar 

  • Saraste, M., Metso, T., Nakari, T., Jalli, T., Lauraeus, M., and Van der Oost, J. (1991).Eur. J. Biochem. 195, 517–525.

    Google Scholar 

  • Scott, R. A., Schwartz, J. W., and Cramer, S. (1986).Biochemistry 25, 5546–5555.

    Google Scholar 

  • Seelig, A., Ludwig, B., Seelig, J., and Schatz, G. (1981).Biochim. Biophys. Acta 636, 162–167.

    Google Scholar 

  • Shapleigh, J. P., and Gennis, R. B. (1992).Mol. Microbiol. 6, 635–642.

    Google Scholar 

  • Shapleigh, J. P., Hill, J. J., Alben, J. O., and Gennis, R. B. (1992a).J. Bacteriol. 174, 2338–2343.

    Google Scholar 

  • Shapleigh, J. P., Hosler, J. P., Tecklenburg, M. M. J., Kim, Y., Babcock, G. T., Gennis, R. B., and Ferguson-Miller, S. (1992b).Proc. Natl. Acad. Sci. USA 89, 4786–4790.

    Google Scholar 

  • Steinrücke, P., Gerhus, E., Jetzek, M., Turba, A., and Ludwig, B. (1991a).J. Bioenerg. Biomembr. 23, 227–239.

    Google Scholar 

  • Steinrücke, P., Gerhus, E., and Ludwig, B. (1991b).J. Biol. Chem. 266, 7676–7681.

    Google Scholar 

  • Stevens, T. H., Martin, C. T., Wang, H., Brudvig, G. W., Scholes, C. P., and Chan, S. I. (1982).J. Biol. Chem. 257, 12106–12113.

    Google Scholar 

  • Surerus, K. K., Oertling, W. A., Fan, C., Gurbiel, R. J., Einarsóttir, O., Antholine, W. E., Dyer, R. B., Hoffman, B. M., Woodruff, W. H., and Fee, J. A. (1992).Proc. Natl. Acad. Sci. USA 89, 3195–3199.

    Google Scholar 

  • Takahashi, E., and Wraight, C. A. (1991).Biochemistry 31, 855–866.

    Google Scholar 

  • Tweedle, M. F., Wilson, L. J., Garcia-Iniguez, L., Babcock, G. T., and Palmer, G. (1978).J. Biol. Chem. 253, 8065–8071.

    Google Scholar 

  • Tzagoloff, A., Capitganio, N., Nobrega, M. P., and Gatti, D. (1990).EMBO J. 9, 2759–2764.

    Google Scholar 

  • van der Oost, J., Pappalainen, P., Musacchio, A., Warne, A., Lemieux, L., Rumbley, J., Gennis, R. B., Aasa. R., Pascher, T., Malmström, B. G., and Saraste, M. (1992).EMBO J. 11, 3209–3217.

    Google Scholar 

  • van Gelder, B. F., and Beinert, H. (1969).Biochim. Biophys. Acta 189, 1–24.

    Google Scholar 

  • Wikström, M., Saraste, M. and Penttitä, T. (1985) inThe Enzymes of Biological Membranes (Martonosi, A., ed.) Vol. 4, Plenum Press, NY, pp. 111–148.

    Google Scholar 

  • Wikström, M. (1989).Nature (London)338, 776–778.

    Google Scholar 

  • Wu, W., Chang, C. K., Varotsis, C., Babcock, G. T., Puustinen, A., and Wikström, M. (1992).J. Am. Chem. Soc. 114, 1182–1187.

    Google Scholar 

  • Wuttke, D. S., Bjerrum, M. J., Winkler, J. R., and Gray, H. (1992).Science 256, 1007–1009.

    Google Scholar 

  • Yoshida, T., and Fee, J. A. (1984).J. Biol. Chem. 259, 1031–1036.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosler, J.P., Ferguson-Miller, S., Calhoun, M.W. et al. Insight into the active-site structure and function of cytochrome oxidase by analysis of site-directed mutants of bacterial cytochromeaa 3 and cytochromebo . J Bioenerg Biomembr 25, 121–136 (1993). https://doi.org/10.1007/BF00762854

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762854

Key words

Navigation