Skip to main content
Log in

H+ transport and coupling by the F0 sector of the ATP synthase: Insights into the molecular mechanism of function

  • Minireview
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The F0 sector of the ATP synthase complex facilitates proton translocation through the membrane, and via interaction with the F1 sector, couples proton transport to ATP synthesis. The molecular mechanism of function is being probed by a combination of mutant analysis and structural biochemistry, and recent progress on theEscherichia coli F0 sector is reviewed here. TheE. coli F0 is composed of three types of subunits (a, b, andc) and current information on their folding and organization in F0 is reviewed. The structure of purified subunitc in chloroform-methanol-H2O resembles that in native F0, and progress in determining the structure by NMR methods is reviewed. Genetic experiments suggest that the two helices of subunitc must interact as a functional unit around an essential carboxyl group as protons are transported. In addition, a unique class of suppressor mutations identify a transmembrane helix of subunita that is proposed to interact with the bihelical unit of subunitc during proton transport. The role of multiple units of subunitc in coupling proton translocation to ATP synthesis is considered. The special roles of Asp61 of subunitc and Arg210 of subunita in proton translocation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aris, J. P., and Simoni, R. D. (1983).J. Biol. Chem. 258, 14599–14609.

    Google Scholar 

  • Bjorbaek, C., Foersom, V., and Michelson, O. (1990)FEBS Lett. 260, 31–34.

    Google Scholar 

  • Cain, B. D., and Simoni, R. D. (1989).J. Biol. Chem. 264, 3292–3300.

    Google Scholar 

  • Cross, R. L. (1981).Annu. Rev. Biochem. 50, 681–714.

    Google Scholar 

  • Dunn, S. D. (1992).J. Biol. Chem. 267, 7630–7636.

    Google Scholar 

  • Feng, Y., and McCarty, R. E. (1990).J. Biol. Chem. 265, 12481–12485.

    Google Scholar 

  • Fillingame, R. H. (1980).Annu. Rev. Biochem. 49, 1079–1113.

    Google Scholar 

  • Fillingame, R. H. (1990). InThe Bacteria, Vol. XII,Bacterial Energetics. (T. A. Krulwich, Ed.). Academic Press, N. Y., p. 345–391.

    Google Scholar 

  • Fillingame, R. H., Oldenburg, M., and Fraga, D. (1991).J. Biol. Chem. 266, 20934–20939.

    Google Scholar 

  • Foster, D. L., and Fillingame, R. H. (1982).J. Biol. Chem. 257, 2009–2015.

    Google Scholar 

  • Fraga, D. (1990). Ph. D. Thesis, University of Wisonsin, Madison, Wisconsin.

    Google Scholar 

  • Fraga, D., and Fillingame, R. H. (1989).J. Biol. Chem. 264, 6797–6803.

    Google Scholar 

  • Fraga, D., and Fillingame, R. H. (1991).J. Bacteriol. 173, 2639–2643.

    Google Scholar 

  • Girvin, M. E., and Fillingame, R. H. (1991).J. Cell Biol., Suppl. 15G, 61 (abstract).

    Google Scholar 

  • Girvin, M. E., Hermolin, J., Pottorf, R., and Fillingame, R. H. (1989).Biochemistry 28, 4340–4343.

    Google Scholar 

  • Hermolin, J., and Fillingame, R. H. (1989).J. Biol. Chem. 264, 3896–3903.

    Google Scholar 

  • Hermolin, J., Gallant, J., and Fillingame, R. H. (1983).J. Biol. Chem. 256, 14550–14555.

    Google Scholar 

  • Hoppe, J., and Sebald, W. (1986).Biochimie 68, 427–434.

    Google Scholar 

  • Howitt, S. M., Lightowlers, R. N., Gibson, F., and Cox, G. B. (1990).Biochim. Biophys. Acta 1015, 264–268.

    Google Scholar 

  • Laubinger, W., and Dimroth, P. (1989).Biochemistry 28, 7194–7198.

    Google Scholar 

  • Lewis, M. J., and Simoni, R. D. (1992).J. Biol. Chem. 267, 3482–3489.

    Google Scholar 

  • Lewis, M. J., Chang, J. A., and Simoni, R. D. (1990).J. Biol. Chem. 265, 10541–10550.

    Google Scholar 

  • Lightowlers, R. N., Howitt, S. M., Hatch, L., Gibson, F., and Cox, G. B. (1987).Biochim. Biophys. Acta 894, 399–406.

    Google Scholar 

  • Miller, M. J., Fraga, D., Paule, C. R., and Fillingame, R. H. (1989).J. Biol. Chem. 264, 305–311.

    Google Scholar 

  • Miller, M. J., Oldenburg, M., and Fillingame, R. H. (1990).Proc. Natl. Acad. Sci. USA 87, 4900–4904.

    Google Scholar 

  • Mosher, M. E., White, L.K. Hermolin, J., and Fillingame, R. H. (1985).J. Biol. Chem. 260, 4807–4814.

    Google Scholar 

  • Paule, C. R., and Fillingame, R. H. (1989).Arch. Biochem. Biophys. 274, 270–284.

    Google Scholar 

  • Senior, A. E. (1988).Physiol. Rev. 68, 177–231.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fillingame, R.H. H+ transport and coupling by the F0 sector of the ATP synthase: Insights into the molecular mechanism of function. J Bioenerg Biomembr 24, 485–491 (1992). https://doi.org/10.1007/BF00762366

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762366

Key words

Navigation