Skip to main content
Log in

Susceptibility and relaxation measurements on rhodium metal at positive and negative spin temperatures in the nanokelvin range

  • Articles
  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We have measured the susceptibility of polycrystalline rhodium foils, down to nuclear spin temperaturesT = 280 pK and “up” toT = −750 pK. AtT > 0, the static susceptibility follows the antiferromagnetic Curie-Weiss law with θ = −1.8±0.3 nK. AtT < 0, the expected ferromagnetic behavior in the vicinity ofT = −0 changes into antiferromgnetic tendency around −6 nK. If only nearest and next nearest neighbor interactions are assumed, our data yieldJ n/h = −17±3 Hz andJ nnn/h = 10±3 Hz for the exchange interaction coefficients. We have also investigated the field and polarization dependence of the spin-lattice relaxation time τ1 at positive and negative nanokelvin temperatures; surprisingly τ1 is longer whenT< 0. Infields below 1 mT, the Korringa constant shows a strong decrease, which becomes more pronounced as the conduction electron temperature decreases. Observed behavior is consistent with conduction electrons scattering from magnetic impurities, provided that the impurity-induced contribution to spin-lattice relaxation is proportional to the inverse of the nuclear spin temperature in small fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For recent reviews see: O. V. Lounasmaa,Physics Today 42, 26 (1989); A. S. Oja,Physica B 169, 306 (1991); P. J. Hakonen, O. V. Lounasmaa, and A. S. Oja,J. Magn. & Magn. Mater. 100, 394 (1991).

    Google Scholar 

  2. J. P. Ekström, J. F. Jacquinot, M. T. Loponen, J. K. Soini, and P. Kumar,Physica 98B, 45 (1979).

    Google Scholar 

  3. G. J. Ehnholm, J. P. Ekström, J. F. Jacquinot, M. T. Loponen, O. V. Lounasmaa, and J. K. Soini,J. Low Temp. Phys. 39, 417 (1980).

    Google Scholar 

  4. M. T. Huiku and M. T. Loponen,Phys. Rev. Lett. 49, 1288 (1982).

    Google Scholar 

  5. M. T. Huika, T. A. Jyrkkiö, J. M. Kyynäräinen, A. S. Oja, and O. V. Lounasmaa,Phys. Rev. Lett. 53, 1692 (1984).

    Google Scholar 

  6. M. T. Huiku, T. A. Jyrkkiö, J. M. Kyynäräinen, M. T. Loponen, O. V. Lounasmaa, and A. S. Oja,J. Low Temp. Phys. 62, 433 (1986).

    Google Scholar 

  7. T. A. Jyrkkiö, M. T. Huiku, K. Siemensmeyer, and K. N. Clausen,J. Low Temp. Phys. 74, 435 (1989).

    Google Scholar 

  8. A. J. Annila, K. N. Clausen, P.-A. Lindgård, O. V. Lounasmaa, A. S. Oja, K. Siemensmeyer, M. Steiner, J. T. Tuoriniemi, and H. Weinfurter,Phys. Rev. Lett. 64, 1421 (1990).

    Google Scholar 

  9. A. J. Annila, K. N. Clausen, A. S. Oja, J. T. Tuoriniemi, and H. Weinfurter,Phys. Rev. B 45, 7772 (1992).

    Google Scholar 

  10. G. Eska and E. Schuberth,Jpn. J. Appl. Phys. Suppl. 26-3, 435 (1987).

    Google Scholar 

  11. G. Eska,Quantum Fluids and Solids — 1989, G. G. Ihas and Y. Takano, eds.,AIP Conf. Proc. No. 194 (1989), p. 316.

  12. S. Kawarazaki, N. Kunitomi, J. R. Arthur, R. M. Moon, W. G. Stirling, and K. A. McEwen,Phys. Rev. B 37, 5336 (1988).

    Google Scholar 

  13. K. A. McEwen and W. G. Stirling,Physica B 156 &157, 754 (1989).

    Google Scholar 

  14. T. Herrmannsdörfer, H. Uniewski, and F. Pobell,Phys. Rev. Lett. 72, 148 (1994);J. Low Temp. Phys. 97, 189 (1994).

    Google Scholar 

  15. A. S. Oja, A. J. Annila, and Y. Takano,Phys. Rev. Lett. 65, 1921 (1990).

    Google Scholar 

  16. P. J. Hakonen, S. Yin, and O. V. Lounasmaa,Phys. Rev. Lett. 64, 2707 (1990).

    Google Scholar 

  17. P. J. Hakonen, S. Yin, and K. K. Nummila,Europhys. Lett. 15, 677 (1991).

    Google Scholar 

  18. A. S. Oja, A. J. Annila, and Y. Takano,J. Low Temp. Phys. 85, 1 (1991).

    Google Scholar 

  19. P. J. Hakonen and S. Yin,J. Low Temp. Phys. 85, 25 (1991).

    Google Scholar 

  20. P. J. Hakonen, K. K. Nummila, and R. T. Vuorinen,Phys. Rev. B 45, 2196 (1992).

    Google Scholar 

  21. P. J. Hakonen, K. K. Nummila, R. T. Vuorinen, and O. V. Lounasmaa,Phys. Rev. Lett. 68, 365 (1992).

    Google Scholar 

  22. P. J. Hakonen and R. T. Vuorinen,J. Low Temp. Phys. 89, 177 (1992).

    Google Scholar 

  23. H. Suzuki, T. Sakon, and N. Mizutani,Physica B 165 &166, 795 (1990), and H. Suzuki, Y. Koike, Y. Karaki, M. Kubota, and H. Ishimoto,Physica B 194–196, 249 (1994).

    Google Scholar 

  24. L. Pollak, E. N. Smith, R. E. Mihailovick, J. H. Ross Jr., P. Hakonen, E. Varoquaux, J. M. Parpia, and R. C. Richardson,Physica B 165 &166, 793 (1990).

    Google Scholar 

  25. L. Pollack, E. N. Smith, J. M. Parpia, and R. C. Richardson,J. Low Temp. Phys. 87, 753 (1992).

    Google Scholar 

  26. L. Pollack, E. N. Smith, J. M. Parpia, and R. C. Richardson,Phys. Rev. Lett. 69, 3885 (1992).

    Google Scholar 

  27. L. Pollack, E. N. Smith, and R. C. Richardson,Physica B 194–196, 343 (1994).

    Google Scholar 

  28. Y. Karaki, M. Kubota, and H. Ishimoto,Physica B 194–196, 461 (1994).

    Google Scholar 

  29. F. Pobell,Physica B 197, 115 (1994).

    Google Scholar 

  30. T. Herrmannsdörfer and F. Pobell,Physica B 194–196, 301 (1994). T. Herrmannsdörfer, P. Smeibedl, B. Schröder-Smeibidl, F. Pobell,Phys. Rev. Lett. 74, (1995).

    Google Scholar 

  31. P. J. Hakonen, R. T. Vuorinen, and J. E. Martikainen,Phys. Rev. Lett. 70, 2818 (1993).

    Google Scholar 

  32. P. J. Hakonen, R. T. Vuorinen, and J. E. Martikainen,Europhys. Lett. 25, 551 (1994).

    Google Scholar 

  33. H. E. Viertiö and A. S. Oja,Phys. Rev. B 36, 3805 (1987); H. E. Viertö and A. S. Oja,Quantum Fluids and Solids — 1989, G. G. Ihas and Y. Takano, eds.,AIP Conf. Proc. No. 194 (1989), p. 305; and H. E. Viertiö,Physica Scripta T33, 168 (1990).

    Google Scholar 

  34. A. J. Annila, K. N. Clausen, P. J. Hakonen, P.-A. Lindgård, O. V. Lounasmaa, K. K. Nummila, A. S. Oja, K. Siemensmeyer, M. Steiner, J. T. Tuoriniemi, H. Weinfurter, and H. E. Viertiö, Risø National Laboratory (DK-4000 Roskilde, Denmark) Report No. M-2874 (1990).

  35. A. S. Oja, A. J. Annila, and Y. Takano,Phys. Rev. B 38, 8602 (1988).

    Google Scholar 

  36. See, e.g., A. Abragam,Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961), pp. 112, 378 ff, 387, and 382–386.

    Google Scholar 

  37. A. S. Oja and P. Kumar,J. Low Temp. Phys. 66, 155 (1987).

    Google Scholar 

  38. A. S. Oja, X. W. Wang, and B. N. Harmon,Phys. Rev. B 39, 4009 (1989).

    Google Scholar 

  39. A. Narath, A. T. Fromhold Jr., and E. D. Jones,Phys. Rev. 144, 428 (1966).

    Google Scholar 

  40. See, e.g., N. W. Ashcroft and N. D. Mermin,Solid State Physics (Holt, Rinehart, and Winston, New York, 1976), pp. 323 and 715.

    Google Scholar 

  41. M. A. Ruderman and C. Kittel,Phys. Rev. 96, 99 (1954).

    Google Scholar 

  42. See, e.g., A. Abragam and M. Goldman,Nuclear Magnetism: Order and Disorder (Clarendon Press, Oxford, 1982), Chs. 5 and 8.

    Google Scholar 

  43. See, e.g., J. S. Smart,Effective Field Theories of Magnetism (Saunders, Philadelphia, 1966), Ch. 8.

    Google Scholar 

  44. N. Rivier and V. Zlatic,J. Phys. F: Metal Phys. 2, L87 and L99 (1972).

    Google Scholar 

  45. A good review is given in P. L. Rossiter,The Electrical Resistivity of Metals and Alloys (Cambridge University Press, 1987), Chs. 3 and 7.

  46. R. L. Rusby,J. Phys. F: Metal Phys. 4, 1265 (1974).

    Google Scholar 

  47. O. V. Lounasmaa,Experimental Principles and Methods below 1 K, Academic Press, New York (1974), Ch. 6.

    Google Scholar 

  48. W. A. Roshen and W. F. Saam,Phys. Rev. B 22, 5495 (1980) and26, 2644 (1982), and references therein.

    Google Scholar 

  49. S. Hornfeldt, J. B. Ketterson, and L. R. Windmiller,J. Cryst. Growth 5, 289 (1969).

    Google Scholar 

  50. J. H. Van Vleck,Nuovo Cimento Suppl. 6, Serie X, 1081 (1957).

    Google Scholar 

  51. L. J. Friedman, A. K. Wennberg, S. N. Ytterboe, and H. M. Bozler,Rev. Sci. Instrum. 57, 410 (1986).

    Google Scholar 

  52. C. Kittel,Introduction to Solid State Physics (John Wiley & Sons Inc., New York, London, Sydney, 1966), pp. 379 and 525.

    Google Scholar 

  53. See, e.g., A. G. Anderson,Phys. Rev. 125, 1517 (1962), and references therein.

    Google Scholar 

  54. See, e.g., L. J. de Jongh and A. R. Miedema,Adv. Phys. 23, 1 (1974).

    Google Scholar 

  55. M. T. Heinilä and A. S. Oja, private communication.

  56. P. L. Moyland, Pradeep Kumar, J. Xu, and Y. Takano,Phys. Rev. B 48, 14020 (1993).

    Google Scholar 

  57. Ch. Buchal, F. Pobell, R. M. Mueller, M. Kubota, and J. R. Owers-Bradley,Phys. Rev. Lett. 50, 64 (1983).

    Google Scholar 

  58. A. S. Oja and O. V. Lounasmaa, to be published inRev. Mod. Phys. (1995).

  59. See, e.g., R. H. Swendsen,Phys. Rev. Lett. 32, 1439 (1974).

    Google Scholar 

  60. M. S. Seehra and T. M. Giebultowicz,Phys. Rev. B 38, 11898 (1988).

    Google Scholar 

  61. M. T. Heinilä and A. S. Oja,Phys. Rev. B 48, 16514 (1993).

    Google Scholar 

  62. P. Jauho and P. V. Pirilä,Phys. Rev. B 1, 21 (1970).

    Google Scholar 

  63. P. J. Hakonen,Phys. Rev. B 49, 15363 (1994).

    Google Scholar 

  64. K. Gloos, P. Smeibidl, and F. Pobell,Physica B 165 &177, 789 (1990) andZ. Phys. B 82, 227 (1991).

    Google Scholar 

  65. G. Eska,J. Low Temp. Phys. 88, 273 (1992).

    Google Scholar 

  66. M. P. Enrico, S. N. Fisher, A. M. Guénault, I. E. Miller, and G. R. Pickett,Phys. Rev. B 49, 6339 (1994).

    Google Scholar 

  67. P. Smeibidl, B. Schröder-Smeibidl, and F. Pobell,Physica B 194–196, 337 (1994).

    Google Scholar 

  68. D. O. Edwards, J. D. Feder, W. J. Gully, G. G. Ihas, J. Landau, and K. A. Muething,Proceedings of the International Symposium at Hakoné, Japan (1977), edited by T. Sugawara (Physical Society of Japan, Tokyo, 1978), p. 280.

    Google Scholar 

  69. A. P. Murani and B. R. Coles,J. Phys. C: Metal Phys. 3,Suppl. No. 2, S159 (1970).

    Google Scholar 

  70. G. S. Knapp,Phys. Lett. 25A, 114 (1967).

    Google Scholar 

  71. E. Bucher, W. F. Brinkman, J. P. Maita, and H. J. Williams,Phys. Rev. Lett. 18, 1125 (1967); B. R. Coles, S. Mozumder, and R. Rusby,Proc. 12th Internat. Conf. Low Temp. Phys. LT12, E. Kanda, ed. (Academic Press, Tokyo, 1971), p. 737; the behavior of dilute systems is not well known, especially for Ni impurities.

    Google Scholar 

  72. P. Bernier and H. Alloul,J. Phys. F: Metal Phys. 3, 869 (1973) andibid. 6, 1193 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vuorinen, R.T., Hakonen, P.J., Yao, W. et al. Susceptibility and relaxation measurements on rhodium metal at positive and negative spin temperatures in the nanokelvin range. J Low Temp Phys 98, 449–487 (1995). https://doi.org/10.1007/BF00752278

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00752278

Keywords

Navigation