Skip to main content
Log in

Properties of a novel ATPase enzyme in chromaffin granules

  • Research Articles
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Membranes were isolated from mitochondria and chromaffin granules of bovine adrenal medullae. The cross-contamination between the two membranes was examined by comparing the radioactive bands on autoradiograms of gels after phosphorylation of the membranes with [γ-32P]-ATP and decoration with [125I]concanavalin A and [125I]protein A with antibody that was raised against chromaffin-granule membranes. It was found that the membranes cross-contaminated each other by less than 10%. The technique of immunodecoration with antibodies against β subunits of proton-ATPases from yeast mitochondria, spinach chloroplasts, andE. coli membranes was used for quantitative estimation of proton-ATPase complexes in chromaffin granules and mitochondrial membranes. It was found that chromaffin-granule membranes contain less than 10% of the amount of proton-ATPase complex in mitochondrial membranes. The specific ATPase activity of chromaffin-granule membranes was on the order of 30 to 50% of the mitochondrial membranes. The ATPase activity of the chromaffin-granule membranes was more sensitive to 4-acetamido-4′-isothiocyano-2,2′-disulfonic acid stilbene and 4-chloro-7-nitrobenzofurazan. It was much less sensitive than the mitochondrial membranes to antibody against β subunit of proton-ATPase fromE. coli membranes. After solubilization of chromaffin-granule membranes by octyglucoside and cholate and subsequent centrifugation on sucrose gradient, two different ATPase enzymes were separated. The heavier enzyme was identical to the mitochondrial-ATPase complex, while the lighter enzyme was identified as a novel ATPase, which might be responsible for the special properties of the ATPase activity of chromaffin-granule membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCCD:

dicyclohoxylcarbodiimide

NBD-Cl:

4-chloro-7-nitrobenzofurazan

SITS:

4-acetamido-4′-isothiocyano-2,2′-disulfonic acid stilbene

SDS:

sodium dodecyl sulfate

MES:

2-(N-morpholino)ethane sulfonic acid

FITC:

fluorescein isothiocyanate

References

  • Abbs, M. T., and Phillips, J. H. (1980).Biochim. Biophys. Acta 595 200–221.

    Google Scholar 

  • Apps, D. K., and Glover, L. A. (1978).FEBS Lett. 85 254–258.

    Google Scholar 

  • Apps, D. K., and Schatz, G. (1979).Eur. J. Biochem. 100 411–419.

    Google Scholar 

  • Apps, D. K., Pryde, J. G., Sutton, R., and Phillips, J. H. (1980).Biochem. J. 190 273–282.

    Google Scholar 

  • Bashford, C. L., Casey, R. P., Radda, G. K., and Ritchie, G. A. (1976).Neuroscience 1 399–412.

    Google Scholar 

  • Cantley, L. C. (1981).Curr. Top. Bioenerg. 11 201–237.

    Google Scholar 

  • Cidon, S., and Nelson, N. (1982), in preparation.

  • Deters, D. W., Racker, E., Nelson, N., and Nelson, H. (1975).J. Biol. Chem. 250 1041–1047.

    Google Scholar 

  • Douglas, M. G., and Butow, R. A. (1976).Proc. Natl. Acad. Sci. USA 73 1083–1086.

    Google Scholar 

  • Ferguson, S. J., Lloyd, W. J., and Radda, G. K. (1975).Eur. J. Biochem. 54 127–133.

    Google Scholar 

  • Kirshner, N. (1962).J. Biol. Chem. 237 2311–2317.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193 265–275.

    Google Scholar 

  • Nelson, N. (1980).Methods Enzymol. 69 301–313.

    Google Scholar 

  • Nelson, N. (1982).Methods Enzymol., in press.

  • Nelson, N., and Schatz, G. (1979).Proc. Natl. Acad. Sci. USA 76 4365–4369.

    Google Scholar 

  • Nelson, N., Deters, D. W., Nelson, H., and Racker, E. (1973).J. Biol. Chem. 248 2049–2055.

    Google Scholar 

  • Nelson, N., Kanner, B. I., and Gutnick, D. L. (1974).Proc. Natl. Acad. Sci. USA 71 2720–2724.

    Google Scholar 

  • Njus, D., Knoth, J., and Zallakian, M. (1981).Curr. Top. Bioenerg. 11 107–147.

    Google Scholar 

  • Pazoles, C. J. Creutz, C. E., Ramu, A., and Pollard, H. B. (1980).J. Biol. Chem. 255 7863–7869.

    Google Scholar 

  • Rebois, R. V., Reynold, E. E., Toll, L., and Howard, B. D. (1980).Biochemistry 19 1240–1248.

    Google Scholar 

  • Rott, R., and Nelson, N. (1981).J. Biol. Chem. 256 9224–9228.

    Google Scholar 

  • Schatz, G. (1979).FEBS Let. 103 201–211.

    Google Scholar 

  • Toll, L., and Howard, B. D. (1978).Biochemistry 17 2517–2523.

    Google Scholar 

  • Toll, L., and Howard, B. D. (1980).J. Biol. Chem. 255 1787–1789.

    Google Scholar 

  • Towbin, H. Staehelin, T., and Gordon, J. (1979).Proc. Natl. Acad. Sci. USA 76 4350–4354.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cidon, S., Nelson, N. Properties of a novel ATPase enzyme in chromaffin granules. J Bioenerg Biomembr 14, 499–512 (1982). https://doi.org/10.1007/BF00743074

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00743074

Key Words

Navigation