Skip to main content
Log in

Distance-dependent quenching of Nile Blue fluorescence byN,N-diethylaniline observed by frequency-domain fluorometry

  • Articles
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescence quenching of Nile Blue by amines is thought to be due to electron transfer to the excited dye molecule from the amine electron donor. We used electron transfer quenching of Nile blue byN,N-diethylaniline in propylene glycol as a model system for an interaction which depends exponentially on distance. We investigated the time dependence of the presumed distance-dependent process using gigahertz harmonic-content frequency-domain fluorometry. The frequency-domain data and the steady-state quantum yield were analyzed globally based on either the Smoluchowski-Collins-Kimball radiation boundary condition (RBC) model or the distancedependent quenching (DDQ) model, in which the rate of quenching depends exponentially on the flourophore-quencher distance. We performed a global analysis which included both the frequencydomain time-resolved decays and the steady-state intensities. The latter were found to be particularly sensitive to the model and parameter values. The data cannot be satisfactorily analyzed using the RBC model for quenching. The analysis shows the excellent agreement of the DDQ model with the experimental data, supporting the applicability of the DDQ model to describe the quenching by the electron transfer process, which depends exponentially on the donor-acceptor distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. Kavarnos (1993)Fundamentals of Photo-Induced Electron Transfer, VCH, New York.

    Google Scholar 

  2. M. A. Fox and M. Chainon (Eds.) (1988)Photo-Induced Electron Transfer, Parts A-D, Elsevier, Amsterdam.

    Google Scholar 

  3. J. Mattay (Ed.) inTopics in Current Chemistry, Vol. 156 (1990),Vol. 158 (1990),Vol. 159 (1991), andVol. 163 (1992), Springer-Verlag, Berlin/Heidelberg/New York.

    Google Scholar 

  4. R. A. Marcus and N. Sutin (1985)Biochim. Biophys. Acta 811, 265–322.

    Google Scholar 

  5. J. R. Boltonet al. (Eds.) (1991) Electron transfer in inorganic, organic and biological systems,Advances in Chemistry Series 228, Am. Chem. Soc., Washington, DC.

    Google Scholar 

  6. N. Matagaet al. (Eds.) (1992)Dynamics and Mechanisms of Photo-Induced Electron Transfer and Related Phenomena, Elsevier, Amsterdam.

    Google Scholar 

  7. D. Rehm and A. Weller (1969)Ber. Bunsenges. Phys. Chem. 69, 834–389.

    Google Scholar 

  8. D. Rehm and A. Weller (1970)Israel J. Chem., 21st Farkas Memorial Symp. 8, 259–271.

    Google Scholar 

  9. P. Suppan (1986)J. Chem. Soc. Faraday Trans. 1 82, 509–511.

    Google Scholar 

  10. M. J. Weaver (1992)Chem. Rev. 92, 463–480.

    Google Scholar 

  11. G. B. Dutt and N. Periasamy (1991)J. Chem. Soc. Faraday Trans. 87, 3815–3820.

    Google Scholar 

  12. H. Heitele (1993)Angew. Chem. Int. Engl. 32, 359–377, and references therein.

    Google Scholar 

  13. M. Tachiya (1993)J. Phys. Chem. 97, 5911–5916.

    Google Scholar 

  14. T. Asahi, M. Ohkohchi, and N. Mataga (1993)J. Phys. Chem. 97, 13132–13137.

    Google Scholar 

  15. Y. Nagasawa, A. P. Yavtsev, K. Tominaga, A. E. Johnson, and K. Yoshikawa (1993)J. Am. Chem. Soc. 115, 7922–7923.

    Google Scholar 

  16. K. Yoshikawa, A. Yavtsev, Y. Nagasawa, H. Kandori, A. Donhal, and K. Kemnitz (1993)Pure Appl. Chem. 65, 1671–1675.

    Google Scholar 

  17. T. Kobayashi, Y. Takagi, H. Kandori, K. Kemnitz, and K. Yoshikawa (1991)Chem. Phys. Lett. 180, 416–422.

    Google Scholar 

  18. H. Kandori, K. Kemnitz, and K. Yoshikawa (1992)J. Phys. Chem. 36, 8042–8048.

    Google Scholar 

  19. K. Yoshihara, Y. Nagasawa, A. Yartsev, S. Kumazaki, H. Kandori, A. E. Johnson, and K. Tominaga (1994)J. Photochem. Photobiol. A Chem. 80, 169–175.

    Google Scholar 

  20. T. L. Nemzek and W. R. Ware (1975)J. Chem. Phys. 62, 477–489.

    Google Scholar 

  21. N. Joshi, M. L. Johnson, I. Gryczynski, and J. R. Lakowicz (1987)Chem. Phys. Lett. 135 (3), 200–207.

    Google Scholar 

  22. J. R. Lakowicz, J. Kuśba, H. Szmacinski, M. L. Johnson, and I. Gryczynski (1993)Chem. Phys. Lett. 206 (5,6), 455–463.

    Google Scholar 

  23. J. R. Lakowicz, B. Zelent, I. Gryczynski, J. Kuśba, and M. L. Johnson (1994)Photochem. Photobiol. 60, 205–214.

    Google Scholar 

  24. R. A. Marcus (1956)J. Chem. Phys. 24, 966–978.

    Google Scholar 

  25. R. A. Marcus (1964)Annu. Rev. Phys. Chem. 15, 155–196.

    Google Scholar 

  26. R. A. Marcus (1982)Faraday Discuss. Chem. Soc. 74, 7–15.

    Google Scholar 

  27. S. V. Camyshan, N. P. Gritsan, V. V. Korolev, and N. M. Bazhin (1990)Chem. Phys. 142, 59–68.

    Google Scholar 

  28. A. Namiki, N. Nakashima, and K. Yoshihara (1979)J. Chem. Phys. 71, 925–930.

    Google Scholar 

  29. N. J. Turro (1978)Modern Molecular Photochemistry, Benjamin/Cummings, Menlo Park, CA, pp. 305–311.

    Google Scholar 

  30. D. D. Eads, B. G. Dismer, and G. R. Fleming (1990)J. Chem. Phys. 93 (2), 1136–1148.

    Google Scholar 

  31. J. Kuśba and B. Sipp (1988)Chem. Phys. 124, 223–226.

    Google Scholar 

  32. J. Kuśba and J. R. Lakowicz (1994) in M. L. Johnson and L. Brand (Eds.),Methods in Enzymology, Numerical Computer Methods, Academic Press, New York, Part B, Vol. 240, pp. 216–262.

    Google Scholar 

  33. J. Kuśba and B. Sipp (1985)J. Luminesc. 33, 255–260.

    Google Scholar 

  34. J. R. Lakowicz, G. Laczko, and I. Gryczynski (1986)Rev. Sci. Instrum. 57, 2499–2506.

    Google Scholar 

  35. G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and J. R. Lakowicz (1990)Rev. Sci. Instrum. 61, 2331–2337.

    Google Scholar 

  36. G. Briegleb and J. Czekalla (1959)Z. Elektrochem. 63, 6–12.

    Google Scholar 

  37. B. Zelent, J. Kuśba, I. Gryczynski, and J. R. Lakowicz (1995)Appl. Spectrosc. 49, 43–50.

    Google Scholar 

  38. J. Kuśba, I. Gryczynski, H. Szmacinski, M. L. Johnson, and J. R. Lakowicz (1992)SPIE 1640, 46–57.

    Google Scholar 

  39. M. Tachiya and S. Murata (1992)J. Phys. Chem. 96, 8441–8444.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakowicz, J.R., Zelent, B., Kuśba, J. et al. Distance-dependent quenching of Nile Blue fluorescence byN,N-diethylaniline observed by frequency-domain fluorometry. J Fluoresc 6, 187–194 (1996). https://doi.org/10.1007/BF00732821

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00732821

Key words

Navigation