Skip to main content
Log in

Wavelength-selective fluorescence as a novel tool to study organization and dynamics in complex biological systems

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The dynamics exhibited by a given component of a large macromolecule such as a folded globular protein or an organized supramolecular assembly like the biological membrane is a function of its precise localization within the larger system. A set of approaches based on the red edge effect in fluorescence spectroscopy, which can be used to monitordirectly the environment and dynamics around a fluorophore in a complex biological system, is reviewed in this article. A shift in the wavelength of maximum fluorescence emission toward higher wavelengths, caused by a shift in the excitation wavelength toward the red edge of the absorption band, is termed the red edge excitation shift (REES). This effect is mostly observed with polar fluorophores in motionally restricted media such as very viscous solutions or condensed phases. This phenomenon arises from the slow rates of solvent relaxation around an excited-state fluorophore, which is a function of the motional restriction imposed on the solvent molecules in the immediate vicinity of the fluorophore. Utilizing this approach, it becomes possible to probe the mobility parameters of the environment itself (which is represented by the relaxing solvent molecules) using the fluorophore merely as a reporter group. Further, since the ubiquitous solvent for biological systems is water, the information obtained in such cases will come from the otherwise ‘optically silent’ water molecules. This makes REES and related techniques extremely useful in biology since hydration plays a crucial modulatory role in a large number of important cellular events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. K. Radda (1975) in E. D. Korn (Ed.),Methods in Membrane Biology: Biophysical Approaches, Vol. 4, Plenum Press, New York, pp. 97–188.

    Google Scholar 

  2. J. R. Lakowicz (1980)J. Biochem. Biophys. Meth. 2, 91–119.

    Google Scholar 

  3. J. R. Lakowicz (1981) in J. E. Bell (Ed.),Spectroscopy in Biochemistry, Vol. I, CRC Press, Boca Raton, Florida, pp. 194–245.

    Google Scholar 

  4. C. D. Stubbs and B. W. Williams (1992) in J. R. Lakowicz (Ed.),Topics in Fluorescence Spectroscopy, Vol. 3: Biochemical Applications, Plenum Press, New York, pp. 231–271.

    Google Scholar 

  5. A. Chattopadhyay (1992) in B. P. Gaber and K. R. K. Easwaran (Eds.),Biomembrane Structure & Function: The State of the Art, Adenine Press, Schenectady, New York, pp. 153–163.

    Google Scholar 

  6. J. Seelig (1977)Q. Rev. Biophys. 10, 353–418.

    Google Scholar 

  7. R. G. Ashcroft, H. G. L. Coster, and J. R. Smith (1981)Biochim. Biophys. Acta 643, 191–204.

    Google Scholar 

  8. C. D. Stubbs, S. R. Meech, A. G. Lee, and D. Phillips (1985)Biochim. Biophys. Acta 815, 351–360.

    Google Scholar 

  9. E. Perochon, A. Lopez, and J. F. Tocanne (1992)Biochemistry 31, 7672–7682.

    Google Scholar 

  10. S. H. White and W. C. Wimley (1994)Curr. Opinion Str. Biol. 4, 79–86.

    Google Scholar 

  11. M. Shinitzky and Y. Barenholz (1978)Biochim. Biophys. Acta 515, 367–394.

    Google Scholar 

  12. H.-J. Galla and W. Hartmann (1980)Chem. Phys. Lipids 27, 199–219.

    Google Scholar 

  13. D. Chapman and G. Benga (1984) in D. Chapman (Ed.),Biomembrane Fluidity-Studies of Model and Natural Biomembranes, Vol. 5, Academic Press, New York, pp. 1–56.

    Google Scholar 

  14. M. Shinitzky (1984) inMembrane Fluidity and Cellular Functions, Vol. 1, CRC Press, Boca Raton, Florida, pp. 1–51.

    Google Scholar 

  15. D. F. Bocian and S. I. Chan (1978)Annu. Rev. Phys. Chem. 29, 307–335.

    Google Scholar 

  16. S. Schreir, C. F. Polnaszek, and I. C. P. Smith (1978)Biochim. Biophys. Acta 515, 375–436.

    Google Scholar 

  17. J. B. Birks (1970)Photophysics of Aromatic Molecules, Wiley-Interscience, London.

    Google Scholar 

  18. K. K. Rohatgi-Mukherjee (1978)Fundamentals of Photochemistry, Wiley Eastern, New Delhi.

    Google Scholar 

  19. R. F. Chen (1967)Anal. Biochem. 19, 374–387.

    Google Scholar 

  20. A. N. Fletcher (1968)J. Phys. Chem. 72, 2742–2749.

    Google Scholar 

  21. W. C. Galley and R. M. Purkey (1970)Proc. Natl. Acad. Sci. USA 67, 1116–1121.

    Google Scholar 

  22. A. N. Rubinov and V. I. Tomin (1970)Opt. Spectrosk. 29, 1082–1089.

    Google Scholar 

  23. F. Castelli and L. S. Forster (1973)J. Am. Chem. Soc. 95, 7223–7226.

    Google Scholar 

  24. K.-I. Itoh, and T. Azumi (1975)J. Chem. Phys. 62, 3431–3438.

    Google Scholar 

  25. A. P. Demchenko (1982)Biophys. Chem. 15, 101–109.

    Google Scholar 

  26. J. R. Lakowicz and S. Keating-Nakamoto (1984)Biochemistry 23, 3013–3021.

    Google Scholar 

  27. R. B. Macgregor and G. Weber (1981)Ann. N. Y. Acad. Sci. 366, 140–154.

    Google Scholar 

  28. A. P. Demchenko (1986)Ultraviolet Spectroscopy of Proteins, Springer-Verlag, Berlin.

    Google Scholar 

  29. A. P. Demchenko (1988)Trends Biochem. Sci. 13, 374–377.

    Google Scholar 

  30. A. P. Demchenko and A. S. Ladokhin (1988)Eur. Biophys. J. 15, 369–379.

    Google Scholar 

  31. A. P. Demchenko (1992) in J. R. Lakowicz (Ed.)Topics in Fluorescence Spectroscopy Vol. 3: Biochemical Applications, Plenum Press, New York, pp. 65–111.

    Google Scholar 

  32. S. Mukherjee, A. Chattopadhyay, A. Samanta, and T. Soujanya (1994)J. Phys. Chem. 98, 2809–2812.

    Google Scholar 

  33. J. R. Lakowicz and A. Balter (1982)Biophys. Chem. 15, 353–360.

    Google Scholar 

  34. J. R. Lakowicz and A. Balter (1982)Photochem. Photobiol. 36, 125–132.

    Google Scholar 

  35. J. R. Lakowicz (1983)Principles of Fluorescence Spectroscopy, Plenum Press, New York.

    Google Scholar 

  36. G. Weber and F. J. Farris (1979)Biochemistry 18, 3075–3078.

    Google Scholar 

  37. J. R. Lakowicz, H. Cherek, G. Laczko, and E. Gratton (1984)Biochim. Biophys. Acta 777, 183–193.

    Google Scholar 

  38. N. G. Bakhshiev, Yu. T. Mazurenko, and I. V. Piterskaya (1966)Opt. Spectrosk. 21, 307–309.

    Google Scholar 

  39. Yu. T. Mazurenko and N. G. Bakhshiev (1970)Opt. Spectrosk. 28, 490–494.

    Google Scholar 

  40. N. G. Bakhshiev, Yu. T. Mazurenko, and I. V. Piterskaya (1969)Izv. Akad. Nauk SSSR Ser. Fiz. 32, 1262–1266.

    Google Scholar 

  41. A. P. Demchenko and A. I. Sytnik (1991)J. Phys. Chem. 95, 10518–10524.

    Google Scholar 

  42. A. P. Demchenko (1985)FEBS Lett. 182, 99–102.

    Google Scholar 

  43. A. P. Demchenko (1988)Eur. Biophys. J. 16, 121–129.

    Google Scholar 

  44. A. P. Demchenko and A. S. Ladokhin (1988)Biochim. Biophys. Acta 955, 352–360.

    Google Scholar 

  45. A. P. Demchenko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, and M. Fishman (1993)Biophys. Chem. 48, 39–48.

    Google Scholar 

  46. J. Albani (1992)Biophys. Chem. 44, 129–137.

    Google Scholar 

  47. R. B. Macgregor and G. Weber (1986)Nature 319, 70–73.

    Google Scholar 

  48. Z. Wasylewski, H. Koloczek, A. Wasniowska, and K. Slizowska (1992)Eur. J. Biochem. 206, 235–242.

    Google Scholar 

  49. A. S. Ladokhin, L. Wang, A. W. Steggles, and P. W. Holloway (1991)Biochemistry 30, 10200–10206.

    Google Scholar 

  50. M. Luthra, C. S. Sundari, P. Guptasarma, and D. Balasubramanian (1991) in P. Balaram and S. Ramaseshan (Eds.)Molecular Conformations and Biological Interactions, Indian Academy of Sciences, Bangalore, pp. 281–293.

    Google Scholar 

  51. D. Balasubramanian, A. K. Bansal, S. Basti, K. S. Bhatt, J. S. Murthy, and C. M. Rao (1994)Curr. Opthalmol. 41, 153–171.

    Google Scholar 

  52. Ch. M. Rao, S. C. Rao, and P. B. Rao (1989)Photochem. Photobiol. 50, 399–402.

    Google Scholar 

  53. S. C. Rao and Ch. M. Rao (1994)FEBS Lett. 337, 269–273.

    Google Scholar 

  54. R. A. Cone (1972)Nature New Biol. 236, 39–43.

    Google Scholar 

  55. M.-M. Poo, and R. A. Cone (1974)Nature 247, 438–441.

    Google Scholar 

  56. J. Deisenhofer, O. Epp, K. Miki, R. Huber, and H. Michel (1985)Nature 318, 618–624.

    Google Scholar 

  57. A. P. Demchenko and N. V. Shcherbatska (1985)Biophys. Chem. 22, 131–143.

    Google Scholar 

  58. J. R. Lakowicz, D. R. Bevan, B. P. Maliwal, H. Cherek, and A. Balter (1983)Biochemistry 22, 5714–5722.

    Google Scholar 

  59. A. Chattopadhyay (1991)Biophys. J. 59, 191a.

    Google Scholar 

  60. A. Chattopadhyay and S. Mukherjee (1993)Biochemistry 32, 3804–3811.

    Google Scholar 

  61. A. Chattopadhyay and R. Rukmini (1993)FEBS Lett. 335, 341–344.

    Google Scholar 

  62. S. Mukherjee and A. Chattopadhyay (1994)Biochemistry 33, 5089–5097.

    Google Scholar 

  63. D. M. Gakamsky, A. P. Demchenko, N. A. Nemkovich, A. N. Rubinov, V. I. Tomin, and N. V. Shcherbatska (1992)Biophys. Chem. 42, 49–61.

    Google Scholar 

  64. A. Chattopadhyay and E. London (1987)Biochemistry 26, 39–45.

    Google Scholar 

  65. A. Chattopadhyay and E. London (1988)Biochim. Biophys. Acta 938, 24–34.

    Google Scholar 

  66. R. E. Pagano and O. C. Martin (1988)Biochemistry 27, 4439–4445.

    Google Scholar 

  67. A. Chattopadhyay (1990)Chem. Phys. Lipids 53, 1–15.

    Google Scholar 

  68. B. Mitra and G. G. Hammes (1990)Biochemistry 29, 9879–9884.

    Google Scholar 

  69. D. E. Wolf, A. P. Winiski, A. E. Ting, K. M. Bocian, and R. E. Pagano (1992)Biochemistry 31, 2865–2873.

    Google Scholar 

  70. F. S. Abrams and E. London (1993)Biochemistry 32, 10826–10831.

    Google Scholar 

  71. S. J. Slater, C. Ho, F. J. Taddeo, M. B. Kelly, and C. D. Stubbs (1993)Biochemistry 32, 3714–3721.

    Google Scholar 

  72. R. M. Venable, Y. Zhang, B. J. Hardy, and R. W. Pastor (1993)Science 262, 223–226.

    Google Scholar 

  73. K. Gawrisch, J. A. Barry, L. L. Holte, T. Sinnwell, L. D. Bergelson, and J. A. Ferretti (1995)Mol. Memb. Biol. 12, 83–88.

    Google Scholar 

  74. M. D. Becker, D. V. Greathouse, R. E. Koeppe, and O. S. Andersen (1991)Biochemistry 30, 8830–8839.

    Google Scholar 

  75. M. C. Bano, L. Braco, and C. Abad (1992)Biophys. J. 63, 70–77.

    Google Scholar 

  76. V. Fonseca, P. Daumas, L. Ranjalahy-Rasoloarijao, F. Heitz, R. Lazaro, Y. Trudelle, and O. S. Andersen (1992)Biochemistry 31, 5340–5350.

    Google Scholar 

  77. D. Jones, E. Hayon, and D. Busath (1986)Biochim. Biophys. Acta 861, 62–66.

    Google Scholar 

  78. C. Conti and L. S. Forster (1974)Biochem. Biophys. Res. Commun. 57, 1287–1292.

    Google Scholar 

  79. B. Valeur and G. Weber (1978)J. Chem. Phys. 69, 2393–2400.

    Google Scholar 

  80. W. R. Ware, S. K. Lee, G. J. Brant, and P. P. Chow (1971)J. Chem. Phys. 54, 4729–4737.

    Google Scholar 

  81. J. H. Easter, R. P. DeToma, and L. Brand (1976)Biophys. J. 16, 571–583.

    Google Scholar 

  82. J. H. Easter, R. P. DeToma, and L. Brand (1978)Biochim. Biophys. Acta 508, 27–38.

    Google Scholar 

  83. M. G. Badea, R. P. DeToma, and L. Brand (1978)Biophys. J. 24, 197–212.

    Google Scholar 

  84. J. R. Lakowicz and H. Cherek (1980)J. Biol. Chem. 255, 831–834.

    Google Scholar 

  85. E. D. Matayoshi and A. M. Kleinfeld (1981)Biophys. J. 35, 215–235.

    Google Scholar 

  86. J. R. Lakowicz, R. B. Thompson, and H. Cherek (1983)Biochim. Biophys. Acta 734, 295–308.

    Google Scholar 

  87. G. Weber (1960)Biochem. J. 75, 335–345.

    Google Scholar 

  88. G. Weber (1960)Biochem. J. 75, 345–352.

    Google Scholar 

  89. J. Lynn and G. D. Fasman (1968)Biopolymers 6, 159–163.

    Google Scholar 

  90. G. Weber and M. Shinitzky (1970)Proc. Natl. Acad. Sci. USA 65, 823–830.

    Google Scholar 

  91. B. Valeur and G. Weber (1977)Photochem. Photobiol. 25, 441–444.

    Google Scholar 

  92. B. Valeur and G. Weber (1977)Chem. Phys. Lett. 45, 140–144.

    Google Scholar 

  93. J. R. Lakowicz (1984)Biophys. Chem. 19, 13–23.

    Google Scholar 

  94. D. L. VanderMeulen, D. G. Nealon, E. Gratton, and E. Jameson (1990)Biophys. Chem. 36, 177–184.

    Google Scholar 

  95. A. Sommer, F. Paltauf, and A. Hermetter (1990)Biochemistry 29, 11134–11140.

    Google Scholar 

  96. J. H. Crowe and L. M. Crowe (1984)Biol. Membr. 5, 57–103.

    Google Scholar 

  97. R. P. Rand and V. A. Parsegian (1989)Biochim. Biophys. Acta 988, 351–375.

    Google Scholar 

  98. C. Ho and C. D. Stubbs (1992)Biophys. J. 63, 897–902.

    Google Scholar 

  99. C. Ho, M. B. Kelly, and C. D. Stubbs (1994)Biochim. Biophys. Acta 1193, 307–315.

    Google Scholar 

  100. F. S. Abrams, A. Chattopadhyay, and E. London (1992)Biochemistry 31, 5322–5327.

    Google Scholar 

  101. F. W. J. Teale (1960)Biochem. J. 76, 381–388.

    Google Scholar 

  102. J. W. Longworth (1971) in R. F. Steiner and I. Weinryb (Eds.),Excited States of Proteins and Nucleic Acids, Plenum Press, New York, pp. 319–484.

    Google Scholar 

  103. V. Gopal, H.-W. Ma, M. K. Kumaran, and D. Chatterji (1994)J. Mol. Biol. 242, 9–22.

    Google Scholar 

  104. M. E. Menezes, P. D. Roepe, and H. R. Kaback (1990)Proc. Natl. Acad. Sci. USA 87, 1638–1642.

    Google Scholar 

  105. M. R. Eftink (1991) in C. H. Suelter (Ed.),Methods of Biochemical Analysis, Vol. 35. Protein Structure Determination, Wiley, New York, pp. 127–205.

    Google Scholar 

  106. A. Chattopadhyay and M. G. McNamee (1991)Biochemistry 30, 7159–7164.

    Google Scholar 

  107. V. W. Cornish, D. R. Benson, C. A. Altenbach, K. Hideg, W. L. Hubbell, and P. G. Schultz (1994)Proc. Natl. Acad. Sci. USA 91, 2910–2914.

    Google Scholar 

  108. M. W. Nowak, P. C. Kearney, J. R. Sampson, M. E. Saks, C. G. Labarca, S. K. Silverman, W. Zhong, J. Thorson, J. N. Abelson, N. Davidson, P. G. Schultz, D. A. Dougherty, and H. A. Lester (1995)Science 268, 439–442.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, S., Chattopadhyay, A. Wavelength-selective fluorescence as a novel tool to study organization and dynamics in complex biological systems. J Fluoresc 5, 237–246 (1995). https://doi.org/10.1007/BF00723895

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00723895

Key words

Navigation