Skip to main content
Log in

Fluorescence lifetime distributions in membrane systems

  • Special Topic Articles
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Membranes are complex biological systems that display heterogeneity at all spatial scales. At a molecular level, the heterogeneity arises from lipid and protein composition. At the cellular level, heterogeneity is due to membrane organization and large scale morphology. A quantitative evaluation of membrane heterogeneity at a microscopic level is very important for several fields of membrane studies. We have developed a method for the analysis of the decay of fluorescent membrane probes that can provide a quantity sensitive to membrane heterogeneity. This method is based on the analysis of the fluorescence decay using continuous lifetime distributions. The major challenge in the interpretation of the analysis results is in the identification, at a molecular level, of the mechanisms that influence the fluorescence decay. In this review we illustrate the principles of data analysis and we show examples of identification of the measured parameters with specific variables that affect membrane heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Fiorini, M. Valentino, S. Wang, M. Glaser, and E. Gratton (1987) Fluorescence lifetime distributions of 1,6-diphenyl-1,3,5-hexatriene in phospholipid vesicles,Biochemistry 26, 3864–3870.

    Google Scholar 

  2. R. Fiorini, M. Valentino, M. Glaser, E. Gratton, and E. Curatola (1988) Fluorescence lifetime distributions of 1,6-diphenyl-1,3,5-hexatriene reveal the effect of cholesterol on the microheterogeneity of erythrocyte membranes,Biochim. Biophys. Acta 939, 485–492.

    Google Scholar 

  3. R. Fiorini, G. Curatola, A. Kantar, P. L. Giorgio, and E. Gratton (1993) Use of laurden fluorescence in studying plasma membrane organization of polymorphonuclear leukocytes during the respiratory burst,Photochem. & Photobiology 57, 438–441.

    Google Scholar 

  4. T. Parasassi, F. Conti, M. Glaser, and E. Gratton (1984) Detection of phospholipid phase separation: A multifrequency phase fluorometry study of 1,6-diphenyl-1,3,5-hexatriene fluorescence,J. Biol. Chem. 259, 14011–14017.

    Google Scholar 

  5. T. Parasassi, G. Ravagnan, O. Sapora, and E. Gratton (1992) Membrane oxidative damage induced by ionizing radiation detected by diphenylhexatriene fluorescence lifetime distribution,Int. J. Radiat. Biol. 61, 791–796.

    Google Scholar 

  6. T. Parasassi, A. M. Giusti, E. Gratton, M. Loiero, M. Raimondi, G. Ravagnan, and O. Sapora (1994) Water concentration in membrane bilayers increases after oxidative damage,Int. J. Radiat. Biol. 65, 329–334.

    Google Scholar 

  7. D. A. Barrow and B. R. Lentz (1985) Membrane structural domains: Resolution limits using diphenylhexatriene fluorescence decay,Biophys. J. 48, 221–234.

    Google Scholar 

  8. L. A. Chen, R. E. Dale, S. Roth, and L. Brand (1977) Nanosecond time-dependent fluorescence depolarization of diphenylhexatriene in dimyristoyllecithin vesicles and the determination of microviscosity,J. Biol. Chem. 252, 2163–2169.

    Google Scholar 

  9. C. Zannoni, A. Arcioni, and P. Cavatorta (1983) Fluorescence depolarization in liquid crystals and membrane bilayers,Chem. Phys. Lipids 32, 179–250.

    Google Scholar 

  10. T. Parasassi, G. De Stasio, R. M. Rush, and E. Gratton (1991) A photophysical model for diphenylhexatriene fluorescence decay in solvents and in phospholipid vesicles,Biophys. J. 59, 466–475.

    Google Scholar 

  11. T. Parasassi, F. Conti, and E. Gratton (1984) Study of heterogeneous emission of parinaric acid isomers using multifrequency phase fluorometry,Biochemistry 23, 5660–5664.

    Google Scholar 

  12. B. R. Lentz (1993) Use of fluorescent probes to monitor molecular order and motions within liposome bilayers,Chem. Phys. Lipids 64, 99–116.

    Google Scholar 

  13. D. Yogev, A. T. Todorov, and J. H. Pendler (1991) Fluorescence lifetime of diphenylhexatriene in flat and bent bilayer lipid membranes,J. Phys. Chem. 95, 3892–3894.

    Google Scholar 

  14. S. Yamashita, A. G. Szabo, and P. Cavatorta (1989) Temperature dependence and decay kinetics of the high-energy band in DPH fluorescence,Bull. Chem. Soc. Japan 62, 2849–2853.

    Google Scholar 

  15. S. L. Bondarev and S. M. Bachilo (1991) Solvent effect on radiative and nonradiative transitions in all-trans-1,6-diphenylhexatriene,J. Photochem. Photobiol. A: Chem. 59, 273–283.

    Google Scholar 

  16. D. Toptygin, J. Svobodova, I. Konopasek, and L. Brand (1992)J. Chem. Phys. 96, 7919–7930.

    Google Scholar 

  17. G. Haran, E. Haas, B. K. Szpikowska, and M. T. Mas (1992) Domain motions in phosphoglycerate kinase: Determination of interdomain distance distributions by site-specific labeling and timeresolved fluorescence energy transfer,Proc. Natl. Acad. Sci. USA 89, 11764–11768.

    Google Scholar 

  18. J. R. Lakowicz, W. Wiczk, I. Gryczynski, M. Fishman, and M. L. Johnson (1993) End-to-end distance distributions of flexible molecules: Frequency-domain fluorescence energy transfer measurements and rotational isomeric state model calculations,Macromolecules 26, 349–363.

    Google Scholar 

  19. A. Siemiarczuk and W. R. Ware (1989) Temperature dependence of fluorescence lifetime distribution in 1,3-di(1-pyrenyl)propane with the maximum entropy method,J. Phys. Chem. 93, 7609–7618.

    Google Scholar 

  20. J. Loidl, F. Paltauf, and A. Hermetter (1990) Fluorescence lifetime distributions of parinaroyl phospholipids in choline plasmogen and phosphatidylcholine bilayers containing different amounts of cholesterol,Chem. Phys. Lipids 56, 27–36.

    Google Scholar 

  21. J. C. Brochon, A. K. Livesey, and J. Pouget (1990) Data analysis in frequency-domain fluorometry by the maximum entropy method: Recovery of fluorescence lifetime distributions,Chem. Phys. Lett. 174, 517–521.

    Google Scholar 

  22. B. D. Wagner and W. R. Ware (1990) Recovery of fluorescence lifetime distributions: Application to Forster transfer in rigid and viscous media,J. Phys. Chem. 94, 3489.

    Google Scholar 

  23. J. R. Alcala, E. Gratton, and F. G. Prendergast (1987) Resolvability of fluorescence lifetime distributions using phase fluorometry,Biophys. J. 51, 587–596.

    Google Scholar 

  24. J. R. Alcala, E. Gratton, and F. G. Prendergast (1987) Fluorescence lifetime distributions in proteins,Biophys. J. 51, 597–604.

    Google Scholar 

  25. E. Bismuto, I. Sirangelo, and G. Irace (1992) Fluorescence lifetime distribution of 1,8-anilinonaphthalenesulfonate (ANS) in reversed micelles detected by frequency-domain fluorometry,Biophys. Chem. 44, 83–90.

    Google Scholar 

  26. J. Huang and F. V. Bright (1990) Unimodal Lorentzian lifetime distribution for the 2-anilinonaphthalene-6-sulfonate-beta-cyclodextrin inclusion complex recovered by multifrequency phase-modulation fluorometry,J. Phys. Chem. 94, 8457–8463.

    Google Scholar 

  27. E. Kalb, F. Paltauf, and A. Hermetter (1989) Fluorescence lifetime distributions of diphenylhexatriene-labeled phosphatidylcholine as a tool for the study of phospholipid-cholesterol interactions,Biophys. J. 56, 1245–1253.

    Google Scholar 

  28. L. J. Libertini and E. W. Small (1989) Application of method of moments analysis to fluorescence decay lifetime distributions,Biophys. Chem. 34, 269–282.

    Google Scholar 

  29. T. Parasassi, F. Conti, E. Gratton, and O. Sapora (1987) Membrane modifications of differentiating proerythroblast. Variation of 1,6-diphenyl-1,3,5-hexatriene lifetime distributions by multifrequency phase and modulation fluorometry,Biochim. Biophys. Acta 898, 196–201.

    Google Scholar 

  30. T. Parasassi, G. De Stasio, A. Miccheli, F. Bruno, F. Conti, and E. Gratton (1990) Abscisic acid-induced microheterogeneity in phospholipid vesicles. A fluorescence study,Biophys. Chem. 35, 65–73.

    Google Scholar 

  31. C. Ho and C. D. Stubbs (1992) Hydration at the membrane protein-lipid interface,Biophys. J. 63, 897–902.

    Google Scholar 

  32. C. Ho, B. W. Williams, and C. D. Stubbs (1992) Analysis of cell membrane microheterogeneity using the fluorescence lifetime of DPH-type fluorophores,Biochim. Biophys. Acta 1104, 273–282.

    Google Scholar 

  33. E. Prenner, A. Sommer, H. Stutz, H. Friedl, and A. Hermetter (1993) Inequivalence of fluorescent choline and ethanolamine phospholipids in the erythrocyte membrane: Fluorescence lifetime determination in the frequency and time domain,Arch. Biochem. Biophys. 305, 473–476.

    Google Scholar 

  34. E. Prenner, A. Hermetter, G. Landl, H. Stutz, H. F. Kauffman, and A. J. Kungl (1993) Fluorescence lifetime distributions of various phospholipids labeled with covalently bound diphenylhexatriene in the erythrocyte ghost membrane,J. Phys. Chem. 97, 2788–2792.

    Google Scholar 

  35. B. W. Williams and C. D. Stubbs (1988) Properties influencing fluorophore lifetime distributions in lipid bilayers,Biochemistry 27, 7994–7999.

    Google Scholar 

  36. B. W. Williams, A. W. Scotto, and C. D. Stubbs (1990) Effect of proteins on fluorophore lifetime heterogeneity in lipid bilayers,Biochemistty 29, 3248–55.

    Google Scholar 

  37. M. L. Wratten, E. Gratton, M. van de Ven, and A. Sevanian (1989) DPH lifetime distributions in vesicles containing phospholipid hydroperoxides,Biochim. Biophys. Res. Comm. 164, 169–175.

    Google Scholar 

  38. T. Parasassi, O. Sapora, A. M. Giusti, G. DeStasio, and G. Ravagnan (1991) Alterations in erythrocyte membrane Hpids induced by low doses of ionizing radiation as revealed by 1,6-biphenyl-1,3,5-hexatriene fluorescence lifetime,Int. J. Radiat. Biol. 59, 59–69.

    Google Scholar 

  39. A. Zamburlini, M. Maiorino, P. Barbera, A. M. Pastorino, A. Roveri, L. Cominacini, and F. Ursini (1994) Measurement of lipid hydroperoxides in plasma lipoproteins by a newly highly-sensitive single-photon-counting luminometer,Biochim. Biophys. Acta, in press.

  40. A. Sommer, E. Prenner, R. Gorges, H. Stutz, H. Grillhofer, G. M. Kostner, F. Paltauf, and A. Hermetter (1992) Organization of phosphatidylcholine and sphingomyelin in the surface monolayer of low density lipoprotein and lipoprotein(a) as determined by time-resolved fluorometry,J. Biol. Chem. 267, 24217–24222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gratton, E., Parasassi, T. Fluorescence lifetime distributions in membrane systems. J Fluoresc 5, 51–57 (1995). https://doi.org/10.1007/BF00718782

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00718782

Key words

Navigation