Skip to main content
Log in

Electric dipole moments in polar solvents. I. Audiofrequency measurement with slightly conducting solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Audiofrequency methods were used to measure dielectric constants of dilute solutions containing electrolytes up to free-ion concentrations of 10−4 M. Using a calibrated transformer bridge, capacitance was measured with an accuracy of 0.03 pF at a conductance of 100 μmho and within 0.3 pF at 800 μmho. Evaluation of the double-layer capacitance from the frequency dependence of the data is discribed. The effect of the free ions on the dielectric constant is found to be relatively large and in reasonable agreement with the prediction of the Debye-Falkenhagen theory. The calculation of the electric dipole moment for polar solutes, including ion pairs, is discussed in terms of Kirkwood's theory. Experimental tests are described for finding out whether possible deviations of Kirk-wood's correlation factors from unity may be neglected. These tests involve changing the solvent and the temperature. The tests were satisfied for the ion pairs of tetraisoamylammonium nitrate and for nitrobenzene in chlorobenzene and acetic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a recent review, seeIons and Ion Pairs in Organic Reactions, M. Szwarc, ed. (Wiley-Interscience, New York, 1972), Vol. 1.

    Google Scholar 

  2. T. E. Hogen Esch and J. Smid,J. Am. Chem. Soc. 87, 669 (1965);88, 307, 318 (1966).

    Google Scholar 

  3. See, for example, A. L. McClellon,Tables of Experimental Dipole Moments (W. H. Freeman and Co., San Francisco, 1963);

    Google Scholar 

  4. M. M. Davis,Acid-Base Behavior in Aprotic Organic Solvents, National Bureau of Standards, Monograph 105, Washington, D.C., 1968.

    Google Scholar 

  5. L. Onsager,J. Am. Chem. Soc. 58, 1486 (1936).

    Google Scholar 

  6. J. G. Kirkwood,J. Chem. Phys. 7, 911 (1939);

    Google Scholar 

  7. J. G. Kirkwood,Trans. Faraday Soc. A42, 7 (1946).

    Google Scholar 

  8. W. R. Gilkerson and K. K. Srivastava,J. Phys. Chem. 65, 272 (1961).

    Google Scholar 

  9. K. S. Pribadi and R. L. Kay,Rev. Sci. Instr. 40, 726 (1969).

    Google Scholar 

  10. R. L. Kay, G. A. Vidulich, and K. S. Pribadi,J. Phys. Chem. 73, 445 (1969); G. A. Vidulich, D. F. Evans, and R. L. Kay,ibid.,71, 656 (1967).

    Google Scholar 

  11. D. C. Grahame,Chem. Rev. 41, 441 (1947);

    Google Scholar 

  12. D. C. Grahame,J. Am. Chem. Soc. 68, 301 (1946);

    Google Scholar 

  13. D. C. Grahame,J. Am. Chem. Soc. 76, 4819 (1954).

    Google Scholar 

  14. P. Debye and H. Falkenhagen,Physik. Z. 29, 401 (1928);

    Google Scholar 

  15. H. Falkenhagen,Electrolytes (Clarendon Press, Oxford, 1934.

    Google Scholar 

  16. H. Falkenhagen and G. Kelbg, inModern Aspects of Electrochemistry, J. O'M. Bockris, ed. (Butterworths Scientific Publication, London, 1959), Vol. 2.

    Google Scholar 

  17. C. F. J. Böttcher,Theory of Electric Polarization (Elsevier Publishing Company, Amsterdam, 1952), p. 191.

    Google Scholar 

  18. Resistors, Technical Bulletin, General Radio Co., West Concord, Massachusetts.

  19. Gertsch 1969 Catalog (Singer Instrumentation, Los Angeles), p. 66.

  20. Balsbaugh Laboratories, 25 Industrial Park Rd., So. Hingham, Massachusetts 02043.

  21. C. A. Kraus and R. M. Fuoss,J. Am. Chem. Soc. 55, 21 (1933).

    Google Scholar 

  22. M. R. Crampton and E. Grunwald,J. Am. Chem. Soc. 93, 2990 (1971).

    Google Scholar 

  23. L. M. Tucker and C. A. Kraus,J. Am. Chem. Soc. 69, 455 (1947).

    Google Scholar 

  24. A. W. Adamson,Physical Chemistry of Surfaces (Interscience Publishers, New York, 1967), pp. 210–216.

    Google Scholar 

  25. See, for example, J. D. Ferry,J. Chem. Phys. 16, 737 (1948).

    Google Scholar 

  26. See, for example, J. D. Jackson,Classical Electrodynamics (John Wiley and Sons, New York, 1962), pp. 177–178.

    Google Scholar 

  27. J. B. Hasted and G. W. Roderick,J. Chem. Phys. 29, 17 (1958), and references cited therein;

    Google Scholar 

  28. K. Giese, U. Kaatze, and R. Pottel,J. Phys. Chem. 74, 3718 (1970).

    Google Scholar 

  29. R. M. Fuoss,Proc. Nat. Acad. Sci. U.S. 45, 807 (1959).

    Google Scholar 

  30. R. H. Boyd,J. Chem. Phys. 35, 1281 (1961).

    Google Scholar 

  31. R. Zwanzig,J. Chem. Phys. 38, 1603 (1963).

    Google Scholar 

  32. W. R. Gilkerson and K. K. Srivastava,J. Phys. Chem. 64, 1485 (1960).

    Google Scholar 

  33. C. W. N. Cumper and P. G. Langley,Trans. Faraday Soc. 67, 35 (1971).

    Google Scholar 

  34. K. Bauge and J. W. Smith,J. Chem. Soc. 4244 (1964).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grunwald, E., Effio, A. Electric dipole moments in polar solvents. I. Audiofrequency measurement with slightly conducting solutions. J Solution Chem 2, 373–392 (1973). https://doi.org/10.1007/BF00713251

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00713251

Key words

Navigation