Skip to main content
Log in

Visualization of the peripheral weave of microfilaments in glia cells

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

A peripheral weave of microfilaments is visualized in human glia cells. In this weave small numbers of microfilaments converge to structures in the cell edge. Similar assemblies of microfilaments seem to be attached to structures on the surface of microspikes. Together with filaments splaying from the paracrystalline arrangement in microspikes, these units make up the peripheral weave. The filaments of the weave come in close contact with each other and with filaments of internal actin fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ABERCROMBIE, M., HEAYSMAN, J. E. M. & PEGRUM, S. M. (1970a) The locomotion of fibroblasts in culture. I. Movements of the leading edge.Expl Cell Res. 59, 393–8.

    Google Scholar 

  • ABERCROMBIE, M., HEAYSMAN, J. E. M. & PEGRUM, S. M. (1970b) The locomotion of fibroblasts in culture. II. Ruffling.Expl. Cell Res. 60, 437–44.

    Google Scholar 

  • ABERCROMBIE, M., HEAYSMAN, J. E. M. & PEGRUM, S. M. (1971) The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella.Expl Cell Res. 67, 359–67.

    Google Scholar 

  • ALBRECHT-BUEHLER, G. & GOLDMAN, R. D. (1976) Microspike-mediated particle transport towards the cell body during early spreading of 3T3 cells.Expl Cell Res. 97, 329–39.

    Google Scholar 

  • BRAGINA, E. E., VASILIEV, J. M. & GELFAND, I. M. (1976) Formation of bundles of microfilaments during spreading of fibroblasts on the substrate.Expl Cell Res. 97, 241–8.

    Google Scholar 

  • BROWN, S., LEVINSON, W. & SPUDICH, J. A. (1976) Cytoskeletal elements of chick embryo fibroblasts revealed by detergent extraction.J. supramolec. Struct. 5, 119–30.

    Google Scholar 

  • BRUNK, U., BELL, P., COLLINS, P., FORSBY, N. & FREDRIKSSON, B. A. (1975) SEM ofin vitro cultivated cells, osmotic effects during fixation.Proc. 8th Ann. Scanning Elect. Microsc. Symp. 379–86.

  • BUCKLEY, I. K. & PORTER, K. R. (1967) Cytoplasmic fibrils in living cultured cells. A light and electron microscope study.Protoplasma 64, 349–80.

    Google Scholar 

  • CARLSSON, L. (1979) Cell motility; the possible role of unpolymerized actin.Acta universitatis upsaliensis 537, 1–65.

    Google Scholar 

  • CARLSSON, L., MARKEY, F., BLIKSTAD, I., PERSSON, T. & LINDBERG, U. (1979) Reorganization of actin in platelets stimulated by thrombin as measured by the DNase I inhibition assay.Proc. natn. Acad. Sci. U.S.A. 76, 6376–80.

    Google Scholar 

  • COLLINS, V. P., FORSBY, N., BRUNK, U. T. & WESTERMARK, B. (1977) The surface morphology of cultured human glia and glioma cells. A SEM and time-lapse study at different cell densities.Cytobiologie 16, 52–62.

    Google Scholar 

  • EDDS, K. T. (1977) Dynamic aspects of filopodial formation by reorganization of microfilaments.J. Cell Biol. 73, 479–91.

    Google Scholar 

  • ENGEL, J., FASOLD, H., HULLA, F. W., WAECHTER, F. & WEGNER, A. (1977) The polymerization reaction of muscle actin.Molec. cell. Biochem. 18, 3–13.

    Google Scholar 

  • FUJIWARA, K. & POLLARD, T. D. (1976) Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow and mitotic spindle of human cells.J. Cell Biol. 71, 848–75.

    Google Scholar 

  • GOLDMAN, R. D., LAZARIDES, E., POLLACK, R. & WEBER, K. (1975) The distribution of actin in non-muscle cells.Expl Cell Res. 90, 333–44.

    Google Scholar 

  • GOLDMAN, R. D., SCHLOSS, J. A. & STARGER, J. M. (1976a) Organizational changes of actin-like microfilaments during animal cell movement. InCold Spring Harbor Conference on Cell Proliferation, Vol. 3A, (edited by GOLDMAN, R. D., POLLARD, T. and ROSENBAUM, J.), pp. 217–245. Cold Spring Harbor Laboratory.

  • GOLDMAN, R. D., YERNA, M. J. & SCHLOSS, J. A. (1976b) Localization and organization of microfilaments and related proteins in normal and virus-transformed cells.J. Supramolec. Struct. 5, 155–83.

    Google Scholar 

  • GORDON, W. E. & BUSHNELL, A. (1979) Immunofluorescent and ultrastructural studies of polygonal microfilament networks in respreading non-muscle cells.Expl Cell Res. 120, 335–48.

    Google Scholar 

  • ISENBERG, G., RATHKE, P. C., HÜLSMANN, N., FRANKE, W. W. & WOHLFART-BOTTERMANN, K. E. (1976) Cytoplasmic actomyosin fibrils in tissue culture cells.Cell Tiss. Res. 166, 427–43.

    Google Scholar 

  • ISENBERG, G. & SMALL, J. V. (1978) Filamentous actin, 100Å filaments and microtubules. Their distribution in relation to sites of movement and neuronal transport.Cytobiologie 16, 326–44.

    Google Scholar 

  • ISHIKAWA, H. (1974) Arrowhead complexes in a variety of cell types. InExploratory Concepts in Muscular Dystrophy, Vol. II (edited by MILORAT, A. T.) pp. 37–54. Amsterdam: Excerpta Medica.

    Google Scholar 

  • ISHIKAWA, H., BISCHOFF, R. & HOLTZER, H. (1969) Formation of arrowhead complexes with heavy meromyosin in a variety of cell types.J. Cell Biol. 43, 312–28.

    Google Scholar 

  • KENDRICK-JONES, J., JAKES, R., NYSTRÖM, L. E. & LINDBERG, U. (1978) Chemical characterization of actin and profilin from calf spleen profilactin. InProtides of Biological Fluids.Proceedings of the 26th Colloquium, 1978, (edited by PEETERS, H.), pp. 493–498. Oxford: Pergamon Press.

    Google Scholar 

  • LAZARIDES, E. (1975) Tropomyosin antibody: the specific localization of tropomyosin in nonmuscle cells.J. Cell Biol. 65, 549–61.

    Google Scholar 

  • LAZARIDES, E. (1976a) Actin, α-actinin and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells.J. Cell Biol. 68, 202–19.

    Google Scholar 

  • LAZARIDES, E. (1976b) Two general classes of cytoplasmic actin filaments in tissue culture cells: The role of tropomyosin.J. Supramolec. Struct. 5, 531–63.

    Google Scholar 

  • LAZARIDES, E. & BURRIDGE, K. (1975) α-Actinin: immunofluorescent localization of a muscle structural protein in non-muscle cells.Cell 6, 289–98.

    Google Scholar 

  • LAZARIDES, E. & WEBER, K. (1974) Actin antibody: The specific visualization of actin filaments in non-muscle cells.Proc. natn. Acad. Sci. U.S.A. 71, 2268–72.

    Google Scholar 

  • LINDBERG, U., CARLSSON, L., MARKEY, F. & NYSTRÖM, L. E. (1979) The unpolymerized form of actin in non-muscle cells. InMethods and Achievements in Experimental Pathology, Vol. 8 (edited by GABBIANI, G.), pp. 143–170. Basel: Karger.

    Google Scholar 

  • LINDGREN, A., WESTERMARK, B. & PONTÉN, J. (1975) Serum stimulation of stationary human glia and glioma cells in culture.Expl Cell Res. 95, 311–9.

    Google Scholar 

  • MARKEY, F. & LINDBERG, U. (1979) Biochemical evidence for actin filament formation as a primary response in stimulation of platelets with thrombin; the possible role of the profilin: actin complex. InProtides of Biological Fluids.Proceedings of the 26th Colloquium, 1978, (edited by PEETERS, H.), pp. 487–492. Oxford: Pergamon Press.

    Google Scholar 

  • OSBORN, M., BORN, T., KOITSCH, H. J. & WEBER, K. (1978) Stereoimmunofluorescence microscopy: I. Three dimensional arrangement of microfilaments, microtubules and tonofilaments.Cell 14, 477–88.

    Google Scholar 

  • OTTO, J. J., KANE, R. E. & BRYAN, J. (1979) Formation of filopodia in Coelomocytes: localization of fascin, a 58 000 dalton actin crosslinking protein.Cell 17, 285–93.

    Google Scholar 

  • PAINTER, R. G., SHEETZ, M. & SINGER, S. J. (1975) Detection and ultrastructural localization of human smooth muscle myosin-like molecules in human non-muscle cells by specific antibodies.Proc. natn. Acad. Sci. U.S.A. 72, 1359–63.

    Google Scholar 

  • POLLARD, T. D. (1975) Functional implications of the biochemical and structural properties of cytoplasmic contractile proteins. InMolecules and Cell Movement (edited by INOUÉ, S. and STEPHENS, R. E.), pp. 259–286. New York: Raven Press.

    Google Scholar 

  • PONTÉN, J. & MACINTYRE, E. H. (1968) Long term culture of normal and neoplastic human glia.Acta path. microbiol. scand. 74, 465–86.

    Google Scholar 

  • POSTE, G. & NICOLSON, G. (eds.) (1977)Dynamic aspects of cell surface organization. Cell Surface Reviews, Vol. 3. Amsterdam: Elsevier — North Holland Biomedical Press.

    Google Scholar 

  • RAJARAMAN, R., ROUNDS, D. E., YEN, S. P. S. & REMBAUM, A. (1974) A scanning electron microscope study of cell adhesion and spreadingin vitro.Expl Cell Res. 88, 327–39.

    Google Scholar 

  • RATHKE, P. C., OSBORN, M. & WEBER, K. (1979) Immunological and ultrastructural characterization of microfilament bundles, polygonal nets and stress fibers in an established cell line.Eur. J. Cell Biol. 19, 40–8.

    Google Scholar 

  • REVEL, J. P., HOCH, P. & HO, D. (1974) Adhesion of culture cells to their substratum.Expl Cell Res. 84, 207–18.

    Google Scholar 

  • ROSEN, J. J. & CULP, L. A. (1977) Morphology and cellular origins of substrate-attached material from mouse fibroblasts.Expl Cell Res. 107, 139–49.

    Google Scholar 

  • SMALL, J. V. & CELIS, J. E. (1978) Filament arrangements in negatively stained cultured cells: the organization of actin.Cytobiologie 16, 308–25.

    Google Scholar 

  • SMALL, J. V. & CELIS, J. E. (1979) The triton-extracted cytoskeleton of cultured cells. InProtides of Biological Fluids.Proceedings of the 26th Colloquium, 1978, (edited by PEETERS, H.), pp. 459–464. Oxford: Pergamon Press.

    Google Scholar 

  • SMALL, J. V., ISENBERG, G. & CELIS, J. E. (1978) Polarity of actin at the leading edge of cultured cells.Nature 272, 638–9.

    Google Scholar 

  • SPUDICH, J. A. & AMOS, L. A. (1979) Structure of actin filament bundles from microvilli of sea urchin eggs.J. molec. Biol. 129, 319–31.

    Google Scholar 

  • UTTER, G., BIBERFELD, P., NORBERG, R., THORSTENSSON, R. & FAGREUS, A. (1978) Ultrastructure ofin vitro formed actin-anti-actin immune complexes.Expl Cell Res. 114, 127–33.

    Google Scholar 

  • VALENTINE, R. C., SHAPIRO, B. M. & STDTAMAN, E. R. (1968) Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme fromEscherichia coli.Biochemistry 7, 2143–52.

    Google Scholar 

  • VASILIEV, J. M. & GELFAND, I. M. (1977) Mechanisms of morphogenesis in cell cultures. InInternational Review of Cytology, Vol. 50, (edited by BOURNE, G. H. and DANIELLI, J. F.), pp. 159–274. New York: Academic Press.

    Google Scholar 

  • WEBER, K. & GROESCHEL-STEWARD, U. (1974) Antibody to myosin: the specific visualization of myosin-containing filaments in nonmuscle cells.Proc. natn. Acad. Sci. U.S.A. 71, 4561–64.

    Google Scholar 

  • WEGNER, A. (1976) Head to tail polymerization of actin.J. molec. Biol. 108, 139–50.

    Google Scholar 

  • WESSELS, N. K., SPOONER, B. S. & LUDUENA, M. A. (1973) Surface movements, microfilaments and cell locomotion.Ciba Foundation Symposium 14, 53–82.

    Google Scholar 

  • WOLOSEWICK, J. J. & PORTER, K. R. (1976) Stereo high-voltage electron microscopy of whole cells of the human diploid line. W1-38.Am. J. Anat. 147, 303–24.

    Google Scholar 

  • ZIGMOND, S. H., OTTO, J. J. & BRYAN, J. (1979) Organization of myosin in a submembranous sheath in well-spread human fibroblasts.Expl Cell Res. 119, 205–19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höglund, AS., Karlsson, R., Arro, E. et al. Visualization of the peripheral weave of microfilaments in glia cells. J Muscle Res Cell Motil 1, 127–146 (1980). https://doi.org/10.1007/BF00711795

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711795

Keywords

Navigation