Skip to main content
Log in

Neuronal gene expression in aluminum myelopathy

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

  1. 1.

    Aluminum administration to susceptible animal species results in neurofilament accumulation in neuronal perikarya and proximal axons. Pathogenetic studiesin vivo have shown that aluminum rapidly associates with neuronal chromatin. Whether the effect of aluminum on DNA components plays a role in the production of the neurofibrillary lesion remains unclear.

  2. 2.

    In this study we used Northern analysis andin situ hybridization to evaluate mRNA levels of specific neuronal and glial components in the rabbit spinal cord at various times following aluminum administration.

  3. 3.

    Our results show that (a) all neuronal mRNAs evaluated (neurofilament triplet components, neuronal-specific enolase, and amyloid precursor protein) are markedly decreased, with no decrease in glial fibrillary acidic protein; (b) the effect on neuronal gene expression occurs early and concurrently with the development of the neurofibrillary lesion and reverses rapidly after a single dose of aluminum; and (c) there is a direct correlation between the severity of the neurofibrillary lesion and the decrease in neuronal mRNA levels.

  4. 4.

    We interpret our results to mean that the accumulation of neurofilaments in this model is not due to a selective effect on neurofilament gene expression but may be due to an inhibition of genes coding for components involved in processing of neurofilament proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bizzi, A., and Gambetti, P. (1986). Phosphorylation of neurofilaments is altered in aluminium intoxication.Acta Neuropathol. (Berl.)71154–158.

    Google Scholar 

  • Bizzi, A., Clark Crane, R., Autilio-Gambetti, L., and Gambetti, P. (1984). Aluminum effect on slow axonal transport: a novel impairment of neurofilament transport.J. Neurosci. 4722–731.

    Google Scholar 

  • Clark, A. W., Krekoski, C. A., Parhad, I. M., Liston, D., Julien, J. P., and Hoar, D. I. (1989). Altered expression of genes for amyloid and cytoskeletal proteins in Alzheimer cortex.Ann. Neurol. (in press).

  • Crapper, D. R., Quittkat, S., Krishnan, S. S., Dalton, A. J., and DeBoni, U. (1980). Intranuclear aluminum content in Alzheimer's disease, dialysis encephalopathy, and experimental aluminum encephalopathy.Acta Neuropathol. 5019–24.

    Google Scholar 

  • Crapper-McLachlan, D. R. (1986). Aluminum and Alzheimer's disease.Neurobiol. Aging 7525–532.

    Google Scholar 

  • DuBoni, U., Seger, M., and McLachlan, D. R. (1980). Functional consequences of chromatin bound aluminum in cultured human cells.Neurotoxicology 165–82.

    Google Scholar 

  • Feinberg, A. P., and Vogelstein, B. (1983). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity.Anal. Biochem. 1326–13.

    Google Scholar 

  • Forss-Petter, S., Danielson, P., and Sutcliffe, J. G. (1986). Neuron-specific enolase: Complete structure of rat mRNA, multiple transcriptional start sites, and evidence suggesting posttranscriptional control.J. Neurosci. Res. 16141–156.

    Google Scholar 

  • Hoffman, P. N., Cleveland, D. W., Griffin, J. W., Landes, P. W., Cowan, N. J., and Price, D. L. (1987). Neurofilament gene expression: A major determinant of axonal caliber.Proc. Natl. Acad. Sci. USA 843472–3476.

    Google Scholar 

  • Julien, J. P., Meyer, D., Flavell, D., Hurst, J., and Grosveld, F. (1986). Cloning and developmental expression of the murine neurofilament gene family.Mol. Brain Res. 1243–250.

    Google Scholar 

  • Karlik, S. J., Eichhorn, G. L., Lewis, P. N., and Crapper, D. R. (1980). Interaction of aluminum species with deoxyribonucleic acid.Biochemistry 195991–5998.

    Google Scholar 

  • Kosik, K. S., McCluskey, A. H., Walsh, F. X., and Selkoe, D. J. (1985). Axonal transport of cytoskeletal proteins in aluminum toxicity.Neurochem. Pathol. 399–108.

    Google Scholar 

  • Lapadula, D. M., Irwin, R. D., Suwita, E., and Abou-Donia, M. B. (1986). Cross-linking of neurofilament proteins of rat spinal cord in vivo after administration of 2,5-hexanedione.J. Neurochem. 461843–1850.

    Google Scholar 

  • Lewis, S. A., and Cowan, N. J. (1985). Genetics, evolution, and expression of the 68,000 mol wt neurofilament protein: isolation of a cloned cDNA probe.J. Cell Biol. 100843–850.

    Google Scholar 

  • Lewis, S. A., Balcarek, J. M., Krek, V., Shelanski, M., and Cowan, N. J. (1984). Sequence of a cDNA clone encoding mouse glial fibrillary acidic protein: Structural conservation of intermediate filaments.Proc. Natl. Acad. Sci. USA 812743–2746.

    Google Scholar 

  • Lewis, S. A., Lee, M. G. S., and cowan, N. J. (1985). Five mouse tubulin isotypes and their regulated expression during development.J. Cell Biol. 101852–861.

    Google Scholar 

  • Lukiw, W. J., Kruck, T. P., and McLachlan, D. R. (1987). Alterations in human linker histone-DNA binding in the presence of aluminum salts in vitro and in Alzheimer's disease.Neurotoxicology 8291–302.

    Google Scholar 

  • Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982).Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Matsumoto, H., and Morimura, S. (1980). Repressed template activity of chromatin of pea roots treated by aluminium.Plant & Cell Physiol. 21951–959.

    Google Scholar 

  • Miller, c. A., and Levine, E. M. (1974) Effects of aluminum salts on cultured neuroblastoma cells.J. Neurochem. 22751–758.

    Google Scholar 

  • Miller, F. D.,Naus, C. C., Higgins, G. A., Bloom, F. E., and Milner, R. J. (1987). Developmentally regulated rat brain mRNAs: Molecular and anatomical characterization.J. Neurosci. 782433–2444.

    Google Scholar 

  • Minty, A. J., Caravatti, M., Robert, B., Cohen, A., Daubas, P., Weydert, A., Gros, F., and Buckingham, M. E. (1981). Mouse actin messenger RNAs.J. Biol. Chem. 2561008–1014.

    Google Scholar 

  • Morandi, A., Gambetti, P., Arora, P. K., and Sayre, L. M. (1987). Mechanism of neurotoxic action ofβ,β′-iminodipropionitrile (IDPN): N-Hydroxylation enhances neurotoxic potency.Brain Res. 43769–76.

    Google Scholar 

  • Muma, N. A., Troncoso, J. C., Hoffman, P. N., Koo, E. H., and Price, D. L. (1988). Aluminum neurotoxicity: Altered expression of cytoskeletal genes.Mol. Brain Res. 3115–122.

    Google Scholar 

  • Parhad, I. M., Griffin, J. W., and Koves, J. F. (1984). Aluminum intoxication in the visual system: Morphological and axonal transport studies.Neurology 34197–198.

    Google Scholar 

  • Parhad, I. M., Swedberg, E. A., Hoar, D. I., Krekoski, C. A., and Clark, A. W. (1988). Neurofilament gene expression followingβ,β′ iminodipropionitrile (IDPN) intoxication.Mol. Brain Res. 4293–301.

    Google Scholar 

  • Sanderson, C., McLachlan, D. R., and DeBoni, U. (1982a). Inhibition of corticosterone binding in vitro, in rabbit hippocampus, by chromatin bound aluminum.Acta Neuropathol. (Berl.)57249–254.

    Google Scholar 

  • Sanderson, C. L., McLachlan, D. R., and DeBoni, U. (1982b). Altered steroid induced puffing by chromatin bound aluminum in a polytene chromosome of the blackflysimulium vittatum.J. Genet. Cytol. 2427–36.

    Google Scholar 

  • Sarkander, H. I., Balb, G., Schlosser, R., Stoltenburg, G., and Lux, R. M. (1983). Blockade of neuronal brain RNA initiation sites by aluminum: a primary molecular mechanism of aluminum-induced neurofibrillary changes?. InBrain Aging: Neuropathology and Neuropharmacology, (Aging, Vol. 21) (J. Cervos-Navarro and H. I. Sarkander, Eds.), Raven Press, New York, pp. 259–274.

    Google Scholar 

  • Selkoe, D. J., Liem, R. K. H., Yen, S. H., and Shelanski, M. L. (1979). Biochemical and immunological characterization of neurofilaments in experimental neurofibrillary degeneration induced by aluminum.Brain Res. 163235–252.

    Google Scholar 

  • Tandan, R., and Bradley, W. G. (1985). Amyotorphic lateral sclerosis, 2. Etiopathogenesis.Ann. Neurol. 18419–431.

    Google Scholar 

  • Troncoso, J. C., Price, D. L., Griffin, J. W., and Parhad, I. M. (1982). Neurofibrillary axonal pathology in aluminum intoxication.Ann. Neurol. 122278–283.

    Google Scholar 

  • Troncoso, J. C., Hoffman, P. N., Griffin, J. W., Hess-Kozlow, K. M., and Price, D. L. (1985). Aluminum intoxication: A disorder of neurofilament transport in motor neurons.Brain Res. 342172–175.

    Google Scholar 

  • Troncoso, J. C., Sternberger, N. H., Sternberger, L. A., Hoffman, P. N., and Price, D. L. (1986). Immunocytochemical studies of neurofilament antigens in the neurofibrillary pathology induced by aluminum.Brain Res. 364295–300.

    Google Scholar 

  • Uemura, E. (1984). Intranuclear aluminum accumulation in chronic animals with experimental neurofibrillary changes.Exp. Neurol. 8510–18.

    Google Scholar 

  • Wen, G. Y., and Wisniewski, H. M. (1985). Histochemical localization of aluminum in the rabbit CNS.Acta Neuropathol. (Berl.)68175–184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parhad, I.M., Krekoski, C.A., Mathew, A. et al. Neuronal gene expression in aluminum myelopathy. Cell Mol Neurobiol 9, 123–138 (1989). https://doi.org/10.1007/BF00711449

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711449

Key words

Navigation