Skip to main content
Log in

A model for sensible heat flux probability density function for near-neutral and slightly-stable atmospheric flows

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The probability density function for sensible heat flux was measured above a uniform dry lakebed (Owens lake) in Owens Valley, California. It was found that for moderately stable to near neutral atmospheric stability conditions, the probability density function exhibits well defined exponential tails. These exponential tails are consistent with many laboratory boundarylayer measurements and numerical simulations. A model for the sensible heat flux probability density function was developed and tested. A key assumption in the model derivation was the near Gaussian statistics of the vertical velocity and temperature fluctuations. This assumption was verified from time series measurements of temperature and vertical velocity. The parameters for the sensible heat flux probability density function model were also derived from mean meteorological and surface conditions using surface-layer similarity theory. It was found that the best agreement between modeled and measured sensible heat flux probability density function was at the tails. Finally, a relation between the intermittency parameter, the probability density function, and the mean meteorological conditions was derived. This relation rigorously links the intermittency parameter to mean meteorological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramowitz. M. and Stegun, I. A.: 1964,Handbook of Mathematical Functions, Dover, 1045 pp.

  • Anselmet, F., Gagne, Y., Hopfinger, E. J., and Antonia, R. A.: 1984, ‘Higher Order Velocity Structure Functions in Turbulent Shear Flows’,J. Fluid Mech. 140, 63–89.

    Google Scholar 

  • Antonia, R. A.: 1981, ‘Conditional Sampling in Turbulence Measurements’,Ann. Rev. Fluid. Mech. 13, 131–156.

    Google Scholar 

  • Brutsaert, W., 1982,Evaporation into the Atmosphere: Theory, History, and Applications, Kluwer Academic Publishers Dordrecht, 299 pp.

    Google Scholar 

  • Collineau, S. and Brunet, Y.: 1993, ‘Detection of Turbulent Coherent Motions in a Forest Canopy: Part 1, Wavelet Analysis’,Boundary-Layer Meteorol 65, 357–379.

    Google Scholar 

  • Duncan, M. R. and Schuepp, P. H.: 1992, ‘A Method to Delineate Extreme Structures Within Airborne Flux Traces over FIFE Site’,J. Geophys. Res. 97, 18487–18498.

    Google Scholar 

  • Hechtel, L. M., Moeng, C. H., and Stull, R. B.: 1990, ‘The Effects of Nonhomogeneous Surface Fluxes on the Convective Boundary Layer: A Case Study Using Large-Eddy Simulation’,J. Atmos. Sci. 47, 1721–1741.

    Google Scholar 

  • Hogg, R. V. and Craig, A. T.: 1978,Introduction to Mathematical Statistics, Macmillan, London, 438 pp.

    Google Scholar 

  • Hunt, J. C. R.: 1982, ‘Diffusion in the Stable Boundary Layer’, in Nieuwstadt and H. Van Dop (eds.),Atmospheric Turbulence and Air Pollution Modelling, D. Reidel Dordrecht, 358 pp.

    Google Scholar 

  • Gamage, N. and Hagelberg, C.: 1993, ‘Detection and Analysis of Microfronts and Associated Coherent Events using Localized Transforms’,J. Atmos. Sci. 50, 750–756.

    Google Scholar 

  • Janicka, J., Kolbe, W., and Kollmann, W.: 1979, ‘Closure of the Transport Equations for the Probability Density Function of Scalar Fields’,J. Non-Equil. Thermodyn. 4, 27–36.

    Google Scholar 

  • Jayesh and Warhaft, Z.: 1992, ‘Probability Distribution, Conditional Dissipation, and Transport of Passive Temperature Fluctuations in Grid-Generated Turbulence’,Phys. Fluids 10, 2292–2306.

    Google Scholar 

  • Kader, B. A. and Yaglom, A. M.: 1990 ‘Mean Fields and Fluctuation Moments in Unstably Stratified Turbulent Boundary Layer’,J. Fluid Mech. 212, 637–662.

    Google Scholar 

  • Katul, G. and Parlange, M.: 1992a, ‘A Penman-Brutsaert Model for Wet Surface Evaporation’,Water Resourc. Res. 28, 121–126.

    Google Scholar 

  • Katul, G. and Parlange, M.: 1992b, ‘Estimation of Bare Soil Evaporation Using Skin Temperature Measurements’,J. Hydrol. 132, 91–106.

    Google Scholar 

  • Katul, G. and Parlange, M.: 1993, ‘On the Active Role of Temperature in Surface Layer Temperature’,J. Atmos. Sci. in press.

  • Lumley, J.: 1970,Stochastic Tools in Turbulence, Academic Press, New York, 194 pp.

    Google Scholar 

  • Mahrt, L. and Frank, H.: 1988, ‘Eigenstructure of Eddy Microftonts’,Tellus 40A, 107–119.

    Google Scholar 

  • Mahrt, L.: 1991, ‘Eddy Asymmetry in the Sheared Heated Boundary Layer’,J. Atmos. Sci. 48, 472–492.

    Google Scholar 

  • Mahrt, L. and Ek, M.: 1993, ‘Spatial Variability of Turbulent Fluxes and Roughness Lengths in HAPEX-MOBILIHY’,Boundary-Layer Meteorol. 65, 381–400.

    Google Scholar 

  • McComb, W. D.: 1992,The Physics of Fluid Turbulence, Oxford Science Publications, 572 pp.

  • Metais, O. and Lesieur, M.: 1992, ‘Spectral Large Eddy Simulation of Isotropic and Stably Stratified Turbulence’,J. Fluid Mech. 239, 7–194.

    Google Scholar 

  • Metais, O.: 1991, ‘Large-Eddy Simulation of Turbulent Scalar The Influence of Intermittency’, in J. Jimenez (ed.)The Global Geometry of Turbulence, Plenum Press, New York, 155–166.

    Google Scholar 

  • Monin, A. S. and Obukhov, A. M.: 1954, ‘Basic Laws of Turbulent Mixing in the Ground Layer of the Atmosphere’,Tr. Geofiz. Inst. Akad. Nauk SSSR 151, 163–187.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1971, in J. Lumley (ed.)Statistical Fluid Mechanics Vol. I, MIT Press, Cambridge, 768 pp.

    Google Scholar 

  • Monin, A. S. and Yaglom, A. M.: 1975, in J. Lumley (ed.)Statistical Fluid Mechanics, Vol.II, J., MIT Press, Cambridge, 874 pp.

    Google Scholar 

  • Panofsky, H. A. and Dutton, J. A.: 1984,Atmospheric Turbulence: Models and Methods for Engineering Applications, Wiley-Interscience, New York, 397 pp.

    Google Scholar 

  • Pasquill, F. and Smith, F. B.: 1983,Atmospheric Diffusion, Ellis Horwood Limited, 437 pp.

  • Paw U, K. Y., Brunet, Y., Collineau, S., Shaw, R. H., Maitani, T., Qiu, J., and Hipps, L.: 1992, ‘On Coherent Structures in Turbulence Above and Within Agricultural Plant Canopies’,Agric. For. Meteorol. 61, 55–68.

    Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: 1990,Numerical Receipes: The Art of Scientific Computing, Cambridge University Press, 702 pp.

  • Shaw, R. H., Tavangar, J. and Ward, D.: 1983., ‘Structure of the Reynold Stress in a Canopy Layer’,J. Clim. Appl. Meteorol. 22, 1922–1931.

    Google Scholar 

  • She, Z. S.: 1991, ‘Intermittency and Non-Gaussian Statistics in Turbulence’,Fluid Dynamics Res. 8, 143–158.

    Google Scholar 

  • Stull, R.: 1988,An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.

    Google Scholar 

  • Suomi, V. E. and Businger, J. A.: 1959, ‘Sonic Anemometer-Thermometer’,Geophys. Res. Papers 59, 1–11.

    Google Scholar 

  • Thoroddsen, S. T. and Van Atta, C. W.: 1992, ‘Exponential Tails and Skewness of Density Gradient Probability Density Functions in Stably Stratified Turbulence’,J. Fluid Mech. 244, 547–566.

    Google Scholar 

  • Townsend, A. A.: 1976,The Structure of Turbulent Shear Flow, Cambridge Press, 429 pp.

  • Wyngaard, J. C.: 1981, ‘Cup, Propeller, Vane, and Sonic Anemometer in Turbulence Research’,Ann. Rev. Fluid Mech. 13, 922–929.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katul, G.G. A model for sensible heat flux probability density function for near-neutral and slightly-stable atmospheric flows. Boundary-Layer Meteorol 71, 1–20 (1994). https://doi.org/10.1007/BF00709217

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00709217

Keywords

Navigation