Skip to main content
Log in

Biotransformation of diphenyl ether by the yeastTrichosporon beigelii SBUG 752

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Trichosporon beigelii SBUG 752 was able to transform diphenyl ether. By TLC, HPLC, GC, GC-MS, NMR- and UV-spectroscopy, several oxidation products were identified. The primary attack was initiated by a monooxygenation step, resulting in the formation of 4-hydroxydiphenyl ether, 2-hydroxydiphenyl ether and 3-hydroxydiphenyl ether (48:47:5). Further oxidation led to 3,4-dihydroxydiphenyl ether. As a characteristic product resulting from the cleavage of an aromatic ring, the lactone of 2-hydroxy-4-phenoxymuconic acid was identified. The possible mechanism of ring cleavage to yield this metabolite is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cerniglia CE & Gibson DT (1977) Metabolism of naphthalene byCunninghamella elegans. Appl. Environ. Microbiol. 10: 363–367

    Google Scholar 

  • Cerniglia CE, Morgan JC & Gibson DT (1979) Bacterial and fungal oxidation of dibenzofuran. Biochem. J. 180: 175–185

    Google Scholar 

  • Cerniglia CE (1981) Aromatic hydrocarbons: Metabolism by bacteria, algae and fungi. In: Hodgson E, Bend JR, Philpot RM (Eds) Reviews in Biochemical Toxicology (pp 321–361) Elsevier/North Holland Publishing (o.) New York

    Google Scholar 

  • Cerniglia CE & Crow SA (1981) Metabolism of aromatic hydrocarbons by yeasts. Arch. Microbiol. 129: 9–13

    Google Scholar 

  • Daly JW, Jerina DM & Witkop B (1972) Arene oxides and the NIH shift: the metabolism, toxicity and carcinogenicity of aromatic compounds. Experientia 28: 1129–1249

    Google Scholar 

  • Dodge RH, Cerniglia CE & Gibson DT (1979) Fungal metabolism of biphenyl. Biochem. J. 178: 223–230

    Google Scholar 

  • Eaton WE & Ribbons DW (1982) Metabolism of dibutylphthalate and phthalate byMicrococcus sp. strain 12 B. J. Bacteriol. 151: 48–57

    Google Scholar 

  • Eaton WE & Ribbons DW (1987) Biotransformation of 3-methylphthalate byMicrococcus sp. strain 12 B. J. Gen. Microbiol. 133: 2473–2476

    Google Scholar 

  • Fortnagel P, Harms H, Wittich R-M, Francke W, Krohn S, Meyer H (1989) Cleavage of dibenzofuran and dibenzodioxin ring systems by aPseudomonas bacterium. Naturwiss. 76: 222–223

    Google Scholar 

  • Gaal A & Neujahr H (1980) cis-cis-Muconate cyclase fromTrichosporon cutaneum. Biochem. J. 191: 37–43

    Google Scholar 

  • Gurujeyalakshmi G & Mahadevan A (1987) Degradation of gallic acid byAspergillus flavus. Zentralbl. Mikrobiol. 142: 187–192

    Google Scholar 

  • Hofmann KH & Schauer F (1988) Utilization of phenol by hydrocarbon assimilating yeasts. Antonic van Leeuwenhoek 54: 179–188

    Google Scholar 

  • Hutzinger O & Blumid MJ (1985) Sources and fate of PCDD's and PCDF's: an overview. Chemosphere 14: 581–600

    Google Scholar 

  • Janssen DE, van Allan J & Wilson CV (1955) Synthesis of 4-phenoxycatechol and 2-phenoxyhydroquinone. J. Org. Chem. 20: 1326–1329

    Google Scholar 

  • McLafferty FW & Stauffer DB (1989) The Wiley/NBS registry of mass spectral data. J. Wiley & Sons, New York

    Google Scholar 

  • Mc Omie JFW & West DE (1969) 3,3′-Dihydroxybiphenyl. Org. Synthesis 49: 50–52

    Google Scholar 

  • Plüss N, Poiger H, Hohbach C, Suter M & Schlatter C (1988) Subchronic toxicity of 2,3,4,7,8-pentachlorodibenzofuran in rats. Chemosphere 17: 1099–1110

    Google Scholar 

  • Schauer F, Henning K, Schauer M & Hecker M (1993) Characterization ofTrichosporon beigelii SBUG 752 oxidizing dioxin like compounds (in preparation)

  • Seigle-Murandi FM, Krivobok SMA, Steiman RL, Benoit-Guyod J-LA & Thiault G-A (1991) Biphenyl oxide hydroxylation byCunninghamella echinulata. J. Agric. Food. Chem. 39: 428–430

    Google Scholar 

  • Servé MP & Jerina DM (1978) Synthesis of biphenyl-2,3-oxide. J. Org. Chem. 43: 2711–2714

    Google Scholar 

  • Spanning A & Neujahr HY (1987) Growth and enzyme synthesis during continuous culture ofTrichosporon cutaneum on phenol. Biotechnol. Bioengin. 29: 464–468

    Google Scholar 

  • Stahl E (1967) Thin layer chromatography. Springer-Verlag Berlin, Heidelberg, New York, 818

    Google Scholar 

  • Strubel V, Rast HG, Fietz W, Knackmuss H-J & Engesser KH (1989) Enrichment of dibenzofuran utilizing bacteria with high co-metabolic potential towards dibenzodioxin and other anellated aromatics. FEMS Microbiol. Lett. 58: 233–238

    Google Scholar 

  • Ungnade E & Orwoll EF (1946) 2-Methoxydiphenylether. Org. Synthesis 26: 50–52

    Google Scholar 

  • Ungnade E & Zilch KT (1950) Phenoxyquinones. J. Org. Chem. 15: 1108–1109

    Google Scholar 

  • Walker JRL & Taylor BG (1983) Metabolism of phloroglucinol byFusarium solani. Arch. Microbiol. 134: 123–126

    Google Scholar 

  • Wiseman A, Gondal J & Sims P (1975) 4-Hydroxylation of biphenyl by yeasts containing cytochrome P-450. Biochem. Soc. Trans. 3: 278–285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schauer, F., Henning, K., Pscheidl, H. et al. Biotransformation of diphenyl ether by the yeastTrichosporon beigelii SBUG 752. Biodegradation 6, 173–180 (1995). https://doi.org/10.1007/BF00695348

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00695348

Key words

Navigation