Skip to main content
Log in

Thermodynamic quantities for the interaction of Cl with Mg2+, Ca2+ and H+ in aqueous solution from 250 to 325°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The aqueous reactions, Mg2++Cl=MgCl+, Ca2++Cl=CaCl+, and H+ +Cl=HCl(aq), were studied as a function of ionic strength at 250, 275, 300, and 325°C using a flow calorimetric technique. The logK, ΔH, ΔS and ΔCp values were determined from the fits of the calculated and experimental heast. The data were reduced assuming a known functionality of the activity coefficient. Hence, the logK, ΔH, ΔS and ΔCp values determined in this study are dependent on the activity coefficient model used. These thermodynamic values were compared with literature results. The logK values for the formation of MgCl+ agree reasonably well with those reported in the literature. The logK values for CaCl+ formation agree reasonably well with those reported in the literature at 300 and 325°C. At lower temperatures, the agreement is poorer. The logK values for the formation of HCl(aq) are generally lower than those reported in the literature. The logK, ΔH, ΔS and ΔCp values for all three ion association reactions are positive and increase with temperature over the temperature range studied. These values are the first determined calorimetrically for the formation of MgCl+ and CaCl+ in the temperature range 275–325°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Turner,A. C. S. Symposium Series No. 133, S. A. Newman, ed., (A. C. S., Washington, D. C. 1980).

    Google Scholar 

  2. W. L. Marshall,Pure Appl. Chem. 57, 283 (1985).

    Google Scholar 

  3. J. L. Oscarson, R. M. Izatt, P. R. Brown, Z. Pawlak, S. E. Gillespie, and J. J. Christensen,J. Solution Chem. 17, 841 (1988).

    Google Scholar 

  4. J. L. Oscarson, S. E. Gillespie, J. J. Christensen, R. M. Izatt, and P. R. Brown,J. Solution Chem. 17, 865 (1988).

    Google Scholar 

  5. J. L. Oscarson, S. E. Gillespie, R. M. Izatt, X. Chen, and C. Pando,J. Solution Chem. 21, 789 (1992).

    Google Scholar 

  6. X. Chen, S. E. Gillespie, J. L. Oscarson, and R. M. Izatt,J. Solution Chem. 21, 825 (1992).

    Google Scholar 

  7. K. S. Johnson and R. M. Pytkowicz,Am. J. Sci. 278, 1428 (1978).

    Google Scholar 

  8. V. Majer and K. Stulik,Talanta 29, 145 (1982).

    Google Scholar 

  9. J. D. Frantz and W. L. Marshall,Am. J. Sci. 282, 1666 (1982).

    Google Scholar 

  10. J. D. Frantz and R. K. Popp,Geochim. Cos. Acta 43, 1233 (1979).

    Google Scholar 

  11. J. D. Frantz and R. K. Popp,Geochim. Cos. Acta 45, 2511 (1981).

    Google Scholar 

  12. P. J. Saccocia and W. E. Seyfried, Jr.,Geochim. Cos. Acta 54, 3283 (1990).

    Google Scholar 

  13. J. C. Tanger, IV and H. C. Helgeson,Am. J. Sci. 288, 19 (1988).

    Google Scholar 

  14. J. M. Simonson, R. H. Busey, and R. E. Mesmer,J. Phys. Chem. 89, 557 (1985).

    Google Scholar 

  15. A. E. Williams-Jones and T. M. Seward,Geochim. Cos. Acta 53, 313 (1989).

    Google Scholar 

  16. A. A. Noyes, Carnegie Institute of Washington, Publication 63 (1907).

  17. D. Pearson, C. S. Copeland, and S. W. Benson,J. Am. Chem. Soc. 85, 1047 (1963).

    Google Scholar 

  18. J. D. Frantz and W. L. Marshall,Am. J. Sci. 284, 651 (1984).

    Google Scholar 

  19. H. F. Holmes, R. H. Busey, J. M. Simonson, R. E. Mesmer, D. G. Archer, and R. H. Wood,J. Chem. Thermodyn. 19, 863 (1987).

    Google Scholar 

  20. J. M. Simonson, H. F. Holmes, R. H. Busey, R. E. Mesmer, D. G. Archer, and R. H. Wood,J. Phys. Chem. 94, 7675 (1990).

    Google Scholar 

  21. J. R. Ruaya and T. M. Seward,geochim. Cos. Acta 51, 121 (1987).

    Google Scholar 

  22. H. C. Helgeson,Am. J. Sci. 267, 729 (1969).

    Google Scholar 

  23. R. W. Luce, G. L. Cygan, J. J. Hemley, and W. M. D'Angelo,Geochim. Cos. Acta 49, 525 (1985).

    Google Scholar 

  24. H. P. Snipes, C. Manly, and D. D. Ensor,J. Chem. Eng. Data 20, 287 (1975).

    Google Scholar 

  25. J. E. Mayrath and R. H. Wood,J. Chem. Eng. Data 28, 56 (1983).

    Google Scholar 

  26. H. F. Holmes, C. F. Baes, Jr., and R. E. Mesmer,J. Chem. Thermodyn. 10, 983 (1978).

    Google Scholar 

  27. H. F. Holmes, C. F. Baes, Jr., and R. E. Mesmer,J. Chem. Thermodyn. 13, 101 (1981).

    Google Scholar 

  28. D. E. White, J. A. Gates, D. M. Tillet, and R. H. Wood,J. Chem. Eng. Data 33, 485 (1988).

    Google Scholar 

  29. D. E. White, A. L. Doberstein, J. A. Gates, D. M. Tillett and R. H. Wood,J. Chem. Thermodyn. 19, 251 (1987).

    Google Scholar 

  30. P. P. S. Saluja and J. C. LeBlanc,J. Chem. Eng. Data 32, 72 (1987).

    Google Scholar 

  31. R. C. Phutela and K. S. Pitzer,J. Solution Chem. 12, 201 (1983).

    Google Scholar 

  32. R. C. Phutela, K. S. Pitzer and P. P. S. Saluja,J. Chem. Eng. Data 32, 76 (1987).

    Google Scholar 

  33. J. Ananthaswamy and G. Atkinson,J. Chem. Eng. Data 30, 120 (1985).

    Google Scholar 

  34. J. J. Christensen, P. R. Brown, and R. M. Izatt,Thermochim. Acta 99, 159 (1986).

    Google Scholar 

  35. J. L. Oscarson, S. E. Gillespie, R. M. Izatt, and J. J. Christensen,Determination of Thermodynamic Data for Modeling Corrosion, Vol. 2, Report NP-5708 (Electric Power Research Institute, 1988).

  36. R. M. Izatt, J. L. Oscarson, S. E. Gillespie, and X. Chen,Determination of Thermodynamic Data for Modeling Corrosion, Vol. 4, Report NP-5708 (Electric Power Research Institute, 1992).

  37. R. M. Izatt, J. J. Christensen, and J. L. Oscarson,Determination of Thermodynamic Data for Modeling Corrosion, Vol. 1, Report NP-5708 (Electric Power Research Institute, 1989).

  38. J. P. Hershey, R. Damesceno, and F. J. Millero,J. Solution Chem. 13, 825 (1984).

    Google Scholar 

  39. R. C. Weast,Handbook of Chemistry and Physics, 56th edn., (CRC Press, Cleveland, Ohio, 1975).

    Google Scholar 

  40. H. P. Meissner, inThermodynamics of Aqueous Systems with Industrial Applications, S. A. Newman, ed., (ACS Symposium Series No. 133, American Chemical Society, Washington, D. C., 1980) p. 495.

    Google Scholar 

  41. H. P. Meissner, C. L. Kusik, and J. W. Tester,AIChE J. 18, 661 (1972).

    Google Scholar 

  42. W. T. Lindsay, Jr., inASME Handbook on Water Technology for Thermal Power Systems, P. Cohen, ed., (ASME, New York, 1989) p. 341.

    Google Scholar 

  43. A. R. Parkinson, R. J. Balling, and J. C. Free,Proc. ASME Int. Computers in Eng. Conf. (Las Vegas, Nevada, 1984).

  44. W. L. Marshall and E. U. Franck,J. Phys. Chem. Ref. Data 10, 295 (1981).

    Google Scholar 

  45. L. Haar, J. S. Gallagher, and G. S. Kell,NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units (Hemisphere, Washington, 1984).

    Google Scholar 

  46. W. T. Lindsay, Jr.,Proc. of the 41 st Int. Water Conference (Pittsburgh, PA, 1980), pp. 284.

  47. E. L. Shock and H. C. Helgeson,Geochim. Cos. Acta 52, 2009 (1988).

    Google Scholar 

  48. H. S. Frank and W. Y. Wen,Discuss. Faraday Soc. 24, 133 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillespie, S.E., Oscarson, J.L., Chen, X. et al. Thermodynamic quantities for the interaction of Cl with Mg2+, Ca2+ and H+ in aqueous solution from 250 to 325°C. J Solution Chem 21, 761–788 (1992). https://doi.org/10.1007/BF00651508

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00651508

Key words

Navigation