Skip to main content
Log in

An empirical potential function for the interaction between univalent ions in water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A hydration-shell model has been developed for calculating the interaction energy between ions in water. The hydration shell around each ion contains a few tightly bound water molecules and a larger number of less tightly bound molecules. The energies of their interaction with the ion and the size of the hydration shell have been derived from published experimental data for ion-water clusters in the gas phase. An expression derived for the interaction energy of two univalent ions in water incorporates the following effects: a Lennard-Jones 6–12 interaction, a Coulomb interaction between the charges, the polarization of the hydration shells by a neighboring ion, and an energy term for the removal of water from the hydration shells when the hydration shells of two ions overlap. The ‘effective’ dielectric constant at small ion-ion distances is the only adjustable parameter. Computed interaction energies for aqueous solutions of twelve alkali halides match experimental values, derived from conductimetric measurements, with an average error of ±14%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

7. References

  1. G. Némethy and H. A. Scheraga,Quart. Rev. Biophys. 10, 239 (1977).

    Google Scholar 

  2. I. D. Kuntz, Jr. and W. Kauzmann,Adv. Protein Chem. 28, 239 (1974).

    Google Scholar 

  3. H. A. Scheraga,Ann. N. Y. Acad. Sci. 303, 2 (1977).

    Google Scholar 

  4. Y. Paterson, G. Némethy, and H. A. Scheraga,Ann. N. Y. Acad. Sci. 367, 132 (1981).

    Google Scholar 

  5. K. D. Gibson and H. A. Scheraga,Proc. Natl. Acad. Sci. USA,58, 420 (1967).

    Google Scholar 

  6. M. Gó, N. Gó, and H. A. Scheraga,J. Chem. Phys. 52, 2060 (1970).

    Google Scholar 

  7. H. A. Scheraga,Accts. Chem. Res. 12, 7 (1979).

    Google Scholar 

  8. A. J. Hopfinger,Macromolecules 4, 731 (1971).

    Google Scholar 

  9. Z. I. Hodes, G. Némethy, and H. A. Scheraga,Biopolymers 18, 1565 (1979).

    Google Scholar 

  10. Z. I. Hodes, G. Némethy, and H. A. Scheraga,Biopolymers 18, 1611 (1979).

    Google Scholar 

  11. I. D. Rae, S. J. Leach, E. Minasian, J. A. Smith, S. S. Zimmerman, J. A. Weigold, Z. I. Hodes, G. Némethy, R. W. Woody, and H. A. Scheraga,Int. J. Peptide and Protein Res. 17, 575 (1981).

    Google Scholar 

  12. H. L. Friedman, inModern Aspects of Electrochemistry, No. 6, B. E. Conway and J. O. M. Bockris, eds. (Plenum Press, New York, 1971), p. 1

    Google Scholar 

  13. T. H. Lilley, inElectrochemistry, Vol. V, H. R. Thirsk, ed. (The Chemical Society, London, 1975), p. 1.

    Google Scholar 

  14. H. C. Andersen, inModern Aspects of Electrochemistry, No. 11, B. E. Conway and J. O. M. Bockris, eds. (Plenum Press, New York, 1975), p. 1.

    Google Scholar 

  15. H. L. Friedman,Ann. Rev. Phys. Chem. 32, 179 (1981).

    Google Scholar 

  16. L. B. Magnusson,J. Chem. Phys. 39, 1953 (1963).

    Google Scholar 

  17. R. Triolo, J. R. Grigera, and L. Blum,J. Phys. Chem. 80, 1858 (1976).

    Google Scholar 

  18. J. D. Love and D. K. Ross,J. Chem. Soc. Faraday II 76, 575 (1980).

    Google Scholar 

  19. D. Levesque, J. J. Weis, and G. N. Patey,J. Chem. Phys. 72, 1887 (1980).

    Google Scholar 

  20. S. Levine and H. E. Wrigley,Disc. Faraday Soc. 24, 43 (1957).

    Google Scholar 

  21. S. Levine and G. M. Bell, inElectrolytes, B. Pesce, ed. (Pergamon Press, Oxford, 1962), p.77.

    Google Scholar 

  22. P. S. Ramanathan and H. L. Friedman,J. Chem. Phys. 54, 1086 (1971).

    Google Scholar 

  23. P. S. Ramanathan, C. V. Krishnan, and H. L. Friedman,J. Solution Chem. 1, 237 (1972).

    Google Scholar 

  24. H. L. Friedman, C. V. Krishnan, and C. Jolicoeur,Ann. N. Y. Acad. Sci. 204, 79 (1973).

    Google Scholar 

  25. H. L. Friedman, A. Smitherman, and R. DeSantis,J. Solution Chem. 2, 59 (1973).

    Google Scholar 

  26. R. W. Gurney,Ionic Processes in Solution (McGraw-Hill, New York, 1953).

    Google Scholar 

  27. H. S. Frank and W. Y. Wen,Disc. Faraday Soc. 24, 133 (1957).

    Google Scholar 

  28. G. Némethy and H. A. Scheraga,J. Chem. Phys. 36, 3382 (1962).

    Google Scholar 

  29. H. A. Scheraga,Ann. N. Y. Acad. Sci. 125, 253 (1965).

    Google Scholar 

  30. J. H. Griffith, Ph. D. Thesis, Cornell University, Ithaca, New York (1967);Dissert. Abstracts 28, 133-B (1967).

  31. R. M. Lawrence and R. F. Kruh,J. Chem. Phys. 47, 4758 (1967).

    Google Scholar 

  32. W. Bol, G. J. A. Gerrits, and C. L. van Panthaleon van Eck,J. Appl. Cryst. 3, 486 (1970).

    Google Scholar 

  33. P. A. Kollman and I. D. Kuntz,J. Am. Chem. Soc. 96, 4766 (1974).

    Google Scholar 

  34. B. M. Rode, G. J. Reibnegger, and S. Fujiwara,J. Chem. Soc. Faraday Trans. II 76, 1268 (1980).

    Google Scholar 

  35. G. J. Reibnegger and B. M. Rode,Z. Naturforsch. 36a, 403 (1981).

    Google Scholar 

  36. G. I. Szász, W. O. Riede, and K. Heinzinger,Z. Naturforsch. 34a, 1083 (1979).

    Google Scholar 

  37. G. I. Szász and K. Heinzinger,Z. Naturforsch. 34a, 840 (1979).

    Google Scholar 

  38. P. Bopp, W. Dietz, and K. Heinzinger,Z. Naturforsch. 34a, 1424 (1979).

    Google Scholar 

  39. D. W. Wood, inWater, A Comprehensive Treatise, Vol. VI, F. Franks, ed. (Plenum Press, New York, 1979), p. 279.

    Google Scholar 

  40. W. K. Lee and E. W. Prohofsky,J. Chem. Phys. 75, 3040 (1981).

    Google Scholar 

  41. E. Clementi and R. Barsotti,Chem. Phys. Lett. 59, 21 (1978).

    Google Scholar 

  42. D. L. Beveridge, M. Mezei, P. K. Mehrotra, F. T. Marchese, V. Thirumalai, and G. Ravi-Shankar,Ann. N. Y. Acad. Sci. 367, 108 (1981).

    Google Scholar 

  43. M. Mezei and D. L. Beveridge,J. Chem. Phys. 74, 6902 (1981).

    Google Scholar 

  44. K. G. Breitschwerdt and H. Kistenmacher,Chem. Phys. Lett. 14, 288 (1972).

    Google Scholar 

  45. S. Goldman and R. G. Bates,J. Am. Chem. Soc. 94, 1476 (1972).

    Google Scholar 

  46. K. G. Spears and S. H. Kim,J. Phys. Chem. 80, 673 (1976).

    Google Scholar 

  47. M. H. Abraham and J. Liszi,J. Chem. Soc. Faraday Trans. I 74, 1604 (1978).

    Google Scholar 

  48. M. H. Abraham and J. Liszi,J. Chem. Soc. Faraday Trans. I 74, 2858 (1978).

    Google Scholar 

  49. B. T. Gowda and S. W. Benson,J. Am. Chem. Soc., submitted.

  50. B. T. Gowda and S. W. Benson,J. Phys. Chem. 86, 1544 (1982).

    Google Scholar 

  51. M. H. Abraham and J. Liszi,J. Chem. Soc. Faraday Trans. I 76, 1219 (1980).

    Google Scholar 

  52. J. F. Hinton and E. S. Amis,Chem. Revs. 71, 627 (1971).

    Google Scholar 

  53. P. P. S. Saluja, inInternational Review of Science, Physical Chemistry, Series Two, Electrochemistry Vol. VI, J. O. M. Bockris, ed. (Butterworths, London, 1976), p. 1.

    Google Scholar 

  54. A. W. Castleman Jr.,Adv. Colloid Interface Sci. 10, 73 (1979).

    Google Scholar 

  55. A. K. Covington and K. E. Newman, inModern Aspects of Electrochemistry, No. 12, J. O. M. Bockris and B. E. Conway, Eds. (Plenum Press, New York, 1977), p. 41.

    Google Scholar 

  56. H. G. Hertz and C. Radle,Ber. Bunsenges. Phys. Chem. 77, 521 (1973).

    Google Scholar 

  57. A. Geiger and H. G. Hertz,J. Solution Chem. 5, 365 (1976).

    Google Scholar 

  58. H. Langer and H. G. Hertz,Ber. Bunsenges. Phys. Chem. 81, 478 (1977).

    Google Scholar 

  59. J. E. Enderby and G. W. Neilson, inWater, A Comprehensive Treatise Vol. 6, F. Franks, ed. (Plenum Press, New York, 1979), p. 1.

    Google Scholar 

  60. G. Pálinkás, T. Radnai, G. I. Szasz, and K. Heinzinger,J. Chem. Phys. 74, 3522 (1981).

    Google Scholar 

  61. N. Ohtomo and K. Arakawa,Bull. Chem. Soc. Japan 53, 1789 (1980).

    Google Scholar 

  62. P. Kebarle,Ann. Rev. Phys. Chem. 28, 445 (1977).

    Google Scholar 

  63. W. G. Richards, inWater, A Comprehensive Treatise Vol. 6, F. Franks, ed. (Plenum Press, New York, 1979), p. 123.

    Google Scholar 

  64. P. K. Bopp, K. Heinzinger, and G. Jancsó,Z. Naturforsch. 32a, 620 (1977).

    Google Scholar 

  65. G. Pálinkás, W. O. Riede, and K. Heinzinger,Z. Naturforsch. 32a, 1137 (1977).

    Google Scholar 

  66. H. P. Bennetto and J. J. Spitzer,J. Chem. Soc. Faraday Trans. I 74, 2385 (1978).

    Google Scholar 

  67. P. Schuster, inStructure of Water and Aqueous Solutions W. A. P. Luck, ed. (Verlag Chemie, Weinheim/Bergstr., 1974), p.141.

    Google Scholar 

  68. P. Schuster, inThe Hydrogen Bond, Vol. I, P. Schuster, G. Zundel, and C. Sandorfy, Eds. (North-Holland, Amsterdam, 1976), p. 25.

    Google Scholar 

  69. R. Janoschek, inThe Hydrogen Bond, Vol. I, P. Schuster, G. Zundel, and C. Sandorfy, Eds. (North-Holland, Amsterdam, 1976), p. 165.

    Google Scholar 

  70. S. N. Vinogradov, inMolecular Interactions, Vol. II, H. Ratajczak and W. J. Orville-Thomas, Eds. (J. Wiley and Sons, Chichester, 1980), p.179.

    Google Scholar 

  71. J. G. Kirkwood and F. H. Westheimer,J. Chem. Phys. 6, 506, 513 (1938);7, 437 (1939).

    Google Scholar 

  72. J. B. Hasted, D. M. Riston, and C. H. Collie,J. Chem. Phys. 16, 1 (1948).

    Google Scholar 

  73. F. Booth,J. Chem. Phys. 19, 1327, 1616 (1951).

    Google Scholar 

  74. E. Glueckauf, inChemical Physics of Ionic Solutions, B. E. Conway and R. G. Barradas, Eds. (John Wiley and Sons, New York, 1966), p. 67.

    Google Scholar 

  75. S. Levine and D. K. Rosenthal, inChemical Physics of Ionic Solutions, B. E. Conway and R. G. Barradas, Eds. (John Wiley and Sons, New York, 1966), p. 119.

    Google Scholar 

  76. L. G. Hepler,Austr. J. Chem. 17, 587 (1964).

    Google Scholar 

  77. D. Y. C. Chan, D. J. Mitchell, and B. W. Ninham,J. Chem. Phys. 70, 2946 (1979).

    Google Scholar 

  78. J. L. Lebowitz and E. H. Lieb,Phys. Rev. Lett. 22, 631 (1969).

    Google Scholar 

  79. L. R. Pratt and D. Chandler,J. Solution Chem. 9, 1 (1980).

    Google Scholar 

  80. L. R. Pratt and D. Chandler,J. Chem. Phys. 73, 3434 (1980).

    Google Scholar 

  81. J. E. B. Randles,Trans. Faraday Soc. 52, 1573 (1956).

    Google Scholar 

  82. R. M. Fuoss and C. A. Kraus,J. Am. Chem. Soc. 55, 476 (1933).

    Google Scholar 

  83. R. M. Fuoss,J. Solution Chem. 7, 771 (1978).

    Google Scholar 

  84. R. M. Fuoss,J. Phys. Chem. 82, 2427 (1978).

    Google Scholar 

  85. R. M. Fuoss.Proc. Nat. Acad. Sci. USA 75, 16 (1978).

    Google Scholar 

  86. R. M. Fuoss.Proc. Nat. Acad. Sci. USA 77, 34 (1980).

    Google Scholar 

  87. T. L. Hill,An Introduction to Statistical Thermodynamics (Addison-Wesley, Reading, 1960), p.342.

    Google Scholar 

  88. C. L. Kong,J. Chem. Phys. 59, 2464 (1973).

    Google Scholar 

  89. L. C. Pauling,The Nature of the Chemical Bond, Third Ed. (Cornell University Press, Ithaca, 1960), p. 514.

    Google Scholar 

  90. J. F. Chambers,J. Phys. Chem. 62, 1136 (1958).

    Google Scholar 

  91. J. E. Lind, Jr. and R. M. Fuoss,J. Phys. Chem. 66, 1727 (1962).

    Google Scholar 

  92. R. W. Kunze and R. M. Fuoss,J. Phys. Chem. 67, 914 (1963).

    Google Scholar 

  93. J. C. Justice and R. M. Fuoss,J. Phys. Chem. 67, 1707 (1963).

    Google Scholar 

  94. T. L. Fabry and R. M. Fuoss,J. Phys. Chem. 68, 974 (1964).

    Google Scholar 

  95. A. F. Reynolds, Ph. D. Dissertation, Yale University, 1966.

  96. Y. C. Chiu and R. M. Fuoss,J. Phys. Chem. 72, 4123 (1968).

    Google Scholar 

  97. K. L. Hsia and R. M. Fuoss,J. Am. Chem. Soc. 90, 3055 (1968).

    Google Scholar 

  98. A. D. Pethybridge and D. J. Spiers,J. Chem. Soc. Faraday Trans. I 73, 768 (1977).

    Google Scholar 

  99. F. J. Millero, inWater and Aqueous Solutions, R. A. Horne, ed. (Wiley-Interscience, New York, 1972), p. 519.

    Google Scholar 

  100. F. M. Richards,J. Mol. Biol. 82, 1 (1974).

    Google Scholar 

  101. I. Dzidic and P. Kebarle,J. Phys. Chem. 74, 1466 (1970).

    Google Scholar 

  102. M. Arshadi, R. Yamadagni, and P. Kebarle,J. Phys. Chem. 74, 1475 (1970).

    Google Scholar 

  103. P. Kebarle, inIons and Ion Pairs in Organic Reactions, Vol. I, M. Szwarc, ed. (John Wiley and Sons, New York, 1972), p. 27.

    Google Scholar 

  104. P. Kebarle, inModern Aspects of Electrochemistry, No. 9, B. E. Conway and J. O. M. Bockris, Eds. (Plenum Press, New York, 1974), p. 1.

    Google Scholar 

  105. I. Z. Steinberg and H. A. Scheraga,J. Biol. Chem. 238, 172 (1963).

    Google Scholar 

  106. P. Kebarle, personal communication.

  107. F. A. Momany, R. F. McGuire, A. W. Burgess, and H. A. Scheraga,J. Phys. Chem. 79, 2361 (1975).

    Google Scholar 

  108. G. Némethy, W. J. Peer, and H. A. Scheraga,Ann. Rev. Biophys. Bioeng. 10, 459 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paterson, Y., Némethy, G. & Scheraga, H.A. An empirical potential function for the interaction between univalent ions in water. J Solution Chem 11, 831–856 (1982). https://doi.org/10.1007/BF00644748

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00644748

Key Words

Navigation