Skip to main content
Log in

A heat-induced depolarization ofParamecium and its relationship to thermal avoidance behavior

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

We have recorded fromParamecium a membrane depolarization in response to heat. This heat-induced depolarization is graded with the magnitude of the temperature change and can trigger action potentials. The mechanism for the Ca-action potential, localized in the cilia, is not needed in generating the heat-induced depolarization, since a ciliary Ca-channel mutant (pwB) and a deciliated wild type both show the same magnitude of depolarization as an intact wild type.

The direction and magnitude of change in the membrane potential in response to heat is affected by the initial level of the membrane potential. Conditions which depolarize the wild type decrease both the heat-induced depolarization and thermal avoidance behavior. A mutant with defective thermal avoidance behavior,teaB, is naturally less polarized at rest (Satow and Kung 1981) but can produce heat-induced depolarizations equal to that of the wild type if hyperpolarized to the wild-type levels by injection of constant current. Both the mutant and the wild type have apparent reversal potentials at −5 to −20 mV in 1 mmol/l Ca2+, above which the response to heat becomes a hyperpolarization. In both the wild type andteaB, the size of the heat-induced depolarization parallels the strength of the behavioral response to heat as measured by individual or population assays of thermal avoidance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldino F, Geller HM (1982) Electrophysiological analysis of neuronal thermosensitivity in rat preoptic and hypothalamic tissue cultures. J Physiol (Lond) 327:173–184

    Google Scholar 

  • Carpenter DO (1981) Ionic and metabolic bases of neuronal thermosensitivity. Fed Proc 40:2808–2813

    Google Scholar 

  • Chiu SY, Mrose HE, Ritchie JM (1979) Anomalous temperature dependence of the sodium conductance in rabbit nerve compared with frog nerve. Nature 279:327–328

    Google Scholar 

  • Croll NA (1967) Acclimatization in the eccritic thermal response ofDitylenchus dipsaci. Nematologica 13:385–389

    Google Scholar 

  • Dunlap K (1977) Localization of calcium channels inParamecium caudatum. J Physiol (Lond) 271:119–134

    Google Scholar 

  • Eckert R, Brehm P (1979) Ionic mechanisms of excitation in Paramecium. Annu Rev Biophys Bioeng 8:353–383

    Google Scholar 

  • Farrell J, Rose A (1967) Temperature effects on microorganisms. Annu Rev Microbiol 21:101–120

    Google Scholar 

  • Georgescauld D, Duclohier H (1978) Transient fluorescence signals from pyrene labeled pike nerves during action potential. Possible implications for membrane fluidity changes. Biochem Biophys Res Commun 85:1186–1191

    Google Scholar 

  • Guttman R (1971) The effect of temperature on the function of excitable membranes. In: Aldeman WJ Jr (ed) Biophysics and physiology of excitable membranes. Van Nostrand Reinhold, New York, pp 320–336

    Google Scholar 

  • Hedgecock EM, Russel RL (1975) Normal and mutant thermotaxis in the nematodeCaenorhabditis elegans. Proc Natl Acad Sci USA 72:4061–4065

    Google Scholar 

  • Hennessey TM (1981) Membrane lipids ofParamecium and their roles in sensory transduction. Ph D thesis, University of Wisconsin, Madison

    Google Scholar 

  • Hennessey TM, Nelson DL (1979) Thermosensory behavior inParamecium tetraurelia: a quantitative assay and some factors that influence thermal avoidance. J Gen Microbiol 112:337–347

    Google Scholar 

  • Hennessey TM, Nelson DL (1983) Biochemical studies of the excitable membranes ofParamecium tetraurelia. VIII. Temperature-induced changes in lipid composition and in thermal avoidance behavior. Biochim Biophys Acta 728:145–158

    Google Scholar 

  • Hensel H (1973) Cutaneous thermoreceptors. In: Iggo A (ed) Somatosensory system. (Handbook of sensory physiology, vol II). Springer, Berlin Heidelberg New York, pp 79–110

    Google Scholar 

  • Hensel H (1974) Thermoreceptors. Annu Rev Physiol 36:233–249

    Google Scholar 

  • Hodgkin AL, Katz B (1949) The effect of temperature on the electrical activity of the giant axon of the squid. J Physiol (Lond) 109:240–249

    Google Scholar 

  • Jennings HS (1906) Behavior of the lower organisms. Indiana University Press, Bloomington, Indiana

    Google Scholar 

  • Joyner RW (1981) Temperature effects on neuronal elements. Fed Proc 40:2814–2818

    Google Scholar 

  • Kimelberg HK (1977) The influence of membrane fluidity on the activity of membrane-bound enzymes, In: Poste G, Nicolson GL (eds) Cell surface reviews, vol 3. North-Holland, New York, pp 205–293

    Google Scholar 

  • Kung C (1979) The biology and genetics ofParamecium behavior. In: Breakfield XO (ed) Neurogenetics: genetic approaches to the nervous system. Oxford, New York, pp 1–26

    Google Scholar 

  • Kung C, Saimi Y (1982) The physiological basis of taxes inParamecium. Annu Rev Physiol 44:519–534

    Google Scholar 

  • Landowne D, Scruggs V (1976) The temperature dependence of the movement of potassium and chloride ions associated with nerve impulses. J Physiol (Lond) 259:145–158

    Google Scholar 

  • Maeda K, Imae Y (1979) Thermosensory transduction inEscherichia coli: Inhibition of the thermoresponse by L-serine. Proc Natl Acad Sci USA 76:91–95

    Google Scholar 

  • Mason P, Hasan H, Valis M (1978) Spontaneous firing of hypothalamic neurones over a narrow temperature interval. Nature 273:242–243

    Google Scholar 

  • Naitoh Y (1968) Ionic control of the reversal response of cilia inParamecium caudatum. A calcium hypothesis. J Gen Physiol 51:85–103

    Google Scholar 

  • Naitoh Y, Eckert R (1968) Electrical properties ofParamecium caudatum: Modification by bound and free cations. Z Vergl Physiol 61:427–452

    Google Scholar 

  • Naitoh Y, Eckert R (1972) Electrophysiology of ciliate protozoa. In: Kerkut GA (ed) Experiments in physiology and biochemistry, vol V. Academic Press, London, pp 17–38

    Google Scholar 

  • Nakaoka Y, Oosawa F (1977) Temperature-sensitive behavior ofParamecium caudatum. J Protozool 24:575–580

    Google Scholar 

  • Nelson DL, Kung C (1978) Behavior ofParamecium: Chemical, physiological and genetic studies. In: Hazelbauer GL (ed) Taxis and behavior. Chapman and Hall, London, pp 75–100

    Google Scholar 

  • Nelson DO, Prosser CL (1981) Intracellular recordings from thermosensitive preoptic neurons. Science 213:787–789

    Google Scholar 

  • Nutik SL (1973) Posterior hypothalamic neurons responsive to preoptic region thermal stimulation. J Neurophysiol 36:238–249

    Google Scholar 

  • Ogura A, Machemer H (1980) Distribution of mechanoreceptor channels in theParamecium surface membrane. J Comp Physiol 135:233–242

    Google Scholar 

  • Romey G, Chicheportiche R, Lazdunski M (1980) Transition temperatures of the electrical activity of ion channels in the nerve membrane. Biochim Biophys Acta 602:610–620

    Google Scholar 

  • Sanderman H (1978) Regulation of membrane enzymes by lipids. Biochim Biophys Acta 515:209–237

    Google Scholar 

  • Satow Y, Kung C (1976) A “TEA-insensitive” mutant with increased potassium conductance inParamecium aurelia. J Exp Biol 65:51–63

    Google Scholar 

  • Satow Y, Kung C (1979) Voltage-sensitive Ca-channels and the transient inward current inParamecium tetraurelia. J Exp Biol 78:149–161

    Google Scholar 

  • Satow Y, Kung C (1981) Possible reduction of surface charge by a mutation inParamecium tetraurelia. J Membr Biol 59:179–190

    Google Scholar 

  • Satow Y, Murphy AD, Kung C (1983) The ionic basis of the depolarization mechanoreceptor potential ofParamecium tetraurelia. J Exp Biol 103:253–264

    Google Scholar 

  • Sonneborn TM (1970) Methods inParamecium research. In: Prescott D (ed) Methods in cell physiology, vol 4. Academic Press, New York, pp 241–339

    Google Scholar 

  • Takahashi M, Naitoh Y (1978) Behavioral mutants ofParamecium caudatum with defective membrane electrogenesis. Nature 271:656–659

    Google Scholar 

  • Toyotama H (1981) Thermo-receptor potential inParamecium. Ph D thesis, Osaka University, Japan

    Google Scholar 

  • Whitaker BD, Poff KL (1980) Thermal adaptation of thermosensing and negative thermotaxis inDictyostelium. Exp Cell Res 128:87–93

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hennessey, T.M., Saimi, Y. & Kung, C. A heat-induced depolarization ofParamecium and its relationship to thermal avoidance behavior. J. Comp. Physiol. 153, 39–46 (1983). https://doi.org/10.1007/BF00610340

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00610340

Keywords

Navigation