Skip to main content
Log in

Current source-density analysis in the mushroom bodies of the honeybee (Apis mellifera carnica)

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Information processing in the mushroom bodies which are an important part of most invertebrate central nervous systems was analysed by extracellular electrophysiological techniques. The mushroom bodies consist of layers of parallel intrinsic neurons which make synaptic contact with extrinsic input and output neurons. The intrinsic neurons (approximately 170,000/mushroom body) have very small axon diameters (0.1–1 μm) which makes it difficult to record their activity intracellularly. In order to analyse the functional properties of this neuropil field potentials were measured extracellularly.

Series of averaged evoked potentials (AEPs) were recorded along electrode tracks at consecutive depth intervals in different parts of the mushroom bodies of the bee. These potentials were elicited by olfactory, mechanical and visual stimuli.

In order to locate the synaptic areas generating these potentials, current source-densities (CSD) were calculated using the consecutively measured evoked potentials. The conductivities of the extracellular space along the electrode tracks in the pedunculus and calyx and in part of the alpha-lobe of the mushroom bodies were found to be constant.

The CSD analysis reveals a complex pattern of source-sink distributions in the mushroom bodies. There is a high degree of correlation between current sinks and sources detected by CSD analysis and the morphological distribution of neurons.

The CSD analysis shows that the inputs and outputs of the mushroom bodies involve multimodal synaptic interactions, whereas information processing in the intrinsic Kenyon-cells is limited to sensory inputs from the antenna.

Comparison of the electrophysiological with the histological results shows that the intrinsic cells of the mushroom bodies are physiologically not a homogeneous group as is often proposed. Among the intrinsic neurons clearly defined areas of current sources and sinks can be identified and attributed to Kenyon-cells in different layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AEP :

averaged evoked potentials

AGT :

antennoglomerular tract

CSD :

current source-density

PCT :

antennoglomerular tract

References

  • Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurones in wholemount preparations. Brain Res 138:359–363

    Google Scholar 

  • Breckow J, Kalmring K, Eckhorn R (1982) Multichannel-recordings and real-time current source density (CSD) analysis in the central-nervous system of insects. Problems and methods of application. Biol Cybern 45:115–121

    Google Scholar 

  • Dujardin F (1850) Memoire sur le système nerveux des insects. Ann Sci Natl Zool 14:195–206

    Google Scholar 

  • Erber J (1978) Response characteristics and after effects of multimodal neurons in the mushroom body area of the honey bee. Physiol Entomol 3:77–89

    Google Scholar 

  • Erber J, Masuhr T, Menzel R (1980) Localization of short term memory in the brain of the bee (Apis mellifera). Physiol Entomol 5:343–358

    Google Scholar 

  • Freeman JA, Nicholson C (1975) Experimental optimization of current source-density technique for anuran cerebellum. J Neurophysiol 38:369–382

    Google Scholar 

  • Goll W (1967) Strukturuntersuchungen am Gehirn vonFormica. Z Morphol Ökol Tiere 59:143–210

    Google Scholar 

  • Gregory GE (1980a) Alcoholic Bouin fixation of insect nervous systems for Bodian silver staining. II. Modified solutions. Stain Technol 55:151–160

    Google Scholar 

  • Gregory GE (1980b) Alcoholic Bouin fixation of insect nervous systems for Bodian silver staining. III. A shortened single impregnation method. Stain Technol 55:161–166

    Google Scholar 

  • Gregory GE, Greenway AR, Lord KA (1980) Alcoholic Bouin fixation of insect nervous systems for Bodian silver staining. I. Composition of ‘aged’ fixative. Stain Technol 55:143–150

    Google Scholar 

  • Homberg U (1982) Das mediane Protocerebrum der Honigbiene (Apis mellifica) im Bereich des Zentralkörpers: Physiologische und morphologische Charakterisierung. Dissertation, FB Biologie, FU Berlin

    Google Scholar 

  • Homberg U, Erber J (1979) Response characteristics and identification of extrinsic mushroom body neurons of the bee. Z Naturforsch 34c:612–615

    Google Scholar 

  • Huber F (1955) Über die Funktion der Pilzkörper (Corpora pedunculata) beim Gesang der KeulenheuschreckeGomphocerus rufus L. (Acrididae). Naturwissenschaften 42:566–567

    Google Scholar 

  • Huber F (1956) Auslösung von Bewegungsmustern durch elektrische Reizung des Oberschlundganglions bei Orthopteren (Saltatoria: Gryllidae, Acrididae). Zool Anz [Suppl] 23:248–269

    Google Scholar 

  • Kenyon FC (1896a) The meaning and structure of the so called ‘mushroom bodies’ of the hexapod brain. Am Nat 30:643–650

    Google Scholar 

  • Kenyon FC (1896b) The brain of the bee. A preliminary contribution to the morphology of the nervous system of the arthropoda. J Comp Neurol 6:133–210

    Google Scholar 

  • Leydig F (1864) Vom Bau des thierischen Körpers. Handbuch für vergleichende Anatomie 1. Tübingen

  • Maynard DM (1956) Electric activity in the cockroach cerebrum. Nature 177:529–530

    Google Scholar 

  • Maynard DM (1967) Organization of central ganglia. In: Wiersma CAG (ed) Invertebrate nervous system. Chicago University Press, Chicago, pp 231–255

    Google Scholar 

  • Mobbs P (1982) The brain of the beeApis mellifera. I. The connections and spatial organisation of the mushroom bodies. Phil Trans R Soc London Ser B 298:309–354

    Google Scholar 

  • Nicholson C, Freeman J (1975) Theory of current source-density analysis and determination of conductivity tensor for anuran cerebellum. J Neurophysiol 38:356–368

    Google Scholar 

  • Nicholson C, Llinás R (1975) Real time current source-density analysis using multielectrode array in cat cerebellum. Brain Res 100:418–424

    Google Scholar 

  • Nunez PL (1981) Electric fields of the brain. Oxford University Press, New York Oxford

    Google Scholar 

  • Otto D (1971) Untersuchungen zur zentralnervösen Kontrolle der Lauterzeugung von Grillen. Z Vergl Physiol 74:227–271

    Google Scholar 

  • Pearson L (1971) The corpora pedunculata ofSphinx ligustri L. and other Lepidoptera: An anatomical study. Phil Trans R Soc London Ser B 259:477–516

    Google Scholar 

  • Schildberger K (1981) Some physiological features of mushroom-body linked fibers in the house cricket brain. Naturwissenschaften 68:623–624

    Google Scholar 

  • Schürmann FW (1970) Über die Struktur der Pilzkörper des Insektengehirns. I. Synapsen im Pedunculus. Z Zellforsch 103:365–381

    Google Scholar 

  • Schürmann FW (1972) Über die Struktur der Pilzkörper des Insektengehirns. II. Synaptische Schaltungen im Alpha-Lobus des HeimchensAcheta domesticus L. Z Zellforsch 127:240–257

    Google Scholar 

  • Schürmann FW (1973) Über die Struktur der Pilzkörper des Insektengehirns. III. Die Anatomie der Nervenfasern in den Corpora pedunculata beiAcheta domesticus L. (Orthopthera). Eine Golgi-Studie. Z Zellforsch 145:247–285

    Google Scholar 

  • Schürmann FW (1974) Bemerkungen zur Funktion der Corpora pedunculata im Gehirn der Insekten aus morphologischer Sicht. Exp Brain Res 19:406–432

    Google Scholar 

  • Strausfeld N (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wadepuhl M, Huber F (1979) Elicitation of singing and courtship movements by electrical stimulation of the brain of the grasshopper. Naturwissenschaften 66:320

    Google Scholar 

  • Weiss MJ (1974) Neural connections and the function of the corpora pedunculata in the brain of the American cockroach,Periplaneta americana. J Morphol 142:21–69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaulen, P., Erber, J. & Mobbs, P. Current source-density analysis in the mushroom bodies of the honeybee (Apis mellifera carnica). J. Comp. Physiol. 154, 569–582 (1984). https://doi.org/10.1007/BF00610170

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00610170

Keywords

Navigation