Skip to main content
Log in

Electroreceptive and mechanoreceptive units in the lateral line of the axolotlAmbystoma mexicanum

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

The properties of electroreceptive units (ampullary organs) and mechanoreceptive units (neuromasts) in the head lateral line system of the axolotlAmbystoma mexicanum were compared by recording single unit activity in the afferent fibers:

  1. 1.

    Electroreceptive units respond with excitation to cathodal (outward) and with inhibition to anodal (inward) current. Ordinary lateral line units react in the opposite way: they are excited by anodal and inhibited by cathodal current.

  2. 2.

    Electroreceptive units react to electric field stimuli (square pulses) down to a voltage gradient parallel to the skin of 10 μV cm−1 with 10% change of the mean resting activity. Mechanoreceptive lateral line units show this response at a stimulus strength of about 10 mV cm−1. Sinusoidal stimulation of electroreceptive units in the best frequency range with amplitudes down to 5 μV cm−1 resulted in 10% modulation response.

  3. 3.

    Electroreceptive units respond only to rough mechanical stimulation with water jets, while mechanoreceptive lateral line units have thresholds to local water displacement below 1 μm and show direction sensitivity.

  4. 4.

    The statistical distribution of the resting activity impulse intervals in electroreceptive units has a median between 5 and 25 imp s−1. The value of the median of mechanoreceptive units resting activity is between 5 and 80 imp s−1. Electroreceptive units have a more symmetrical interspike interval distribution (modus — median: ca. 5 imp s−1) than mechanoreceptive units (modus — median: 0–80 imp s−1) under present experimental conditions.

  5. 5.

    Electroreceptive units reduce their resting activity after application of 200 μl aliquots of 10 mmol/l MgCl2 solution to the receptor sites. However, in mechanoreceptive lateral line units, the same stimulus elicits either a weak increase in activity or no reaction at all.

  6. 6.

    The electroreceptive units were tested with sinusoidal electric field stimuli from 0.05 to 100 Hz. The gain curve has its maximum around 10 Hz. At the low frequency end the slope of the curve is 2.7 dB/oct. Above 20 Hz the gain decreases with a slope of 3–4 dB/oct. The mechanoreceptive lateral line units are most sensitive to local sinusoidal water displacements of 20–50 Hz. The gain curve increases with a slope of 12 dB/oct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DAB :

diaminobenzidine 4 HCl

HRP :

horseradish peroxidase

N.l.a. :

Nervus lateralis anterior

N.l.p. :

Nervus lateralis posterior

PSTH :

peristimulus time histogram

r.o.s. :

ramus ophthalmicus superficialis

References

  • Bennett MVL (1967) Mechanisms of electroreception. In: Cahn P (ed) Lateral line detectors. Indiana University Press, Bloomington, pp 313–393

    Google Scholar 

  • Bennett MVL (1971) Electroreception. In: Hoar WS, Randall DS (eds) Fish physiology. Academic Press, New York, pp 493–574

    Google Scholar 

  • Bleckmann H (1980) Reaction time and stimulus frequency in prey localization in the surface feeding fishAplocheilus lineatus. J Comp Physiol 140:163–172

    Google Scholar 

  • Bodznick D, Northcutt RG (1981) Electroreception in lampreys: Evidence that the earliest vertebrates were electroreceptive. Science 212:465–467

    Google Scholar 

  • Bodznick D, Preston DG (1983) Physiological characterization of electroreceptors in the lampreysIchthyomyzon unicupis andPetromyzon marinus. J Comp Physiol 152:209–217

    Google Scholar 

  • Braford MR (1982) African, but not Asian, notopterid fishes are electroreceptive: Evidence from brain characters. Neurosci Lett 32:35–39

    Google Scholar 

  • Bretschneider F, Kroesbergen G, Beijnink BB (1979) Functioning of catfish electroreceptors. Relation between skin potential and receptor activity. J Physiol (Paris) 75:343–347

    Google Scholar 

  • Bullock TH (1982) Electroreception. Annu Rev Neurosci 5:121–1970

    Google Scholar 

  • Bullock TH, Northcutt RG (1982) A new electroreceptive teleost:Xenomystus nigri (Osteoglossiformes: Notopteridae). J Comp Physiol 148:345–352

    Google Scholar 

  • Bullock TH, Northcutt RG, Bodznick DA (1982) Evolution of electroreception. Trends Neurosci 5:50–53

    Google Scholar 

  • Bullock TH, Bodznick DA, Northcutt RG (1983) The phylogenetic distribution of electroreception: evidence for convergent evolution of a sense modality. Brain Res Rev 6:25–47

    Google Scholar 

  • Claas B, Fritzsch B, Münz H (1981) Common efferent to lateral line and labyrinthine hair cells in aquatic vertebrates. Neurosci Lett 27:231–235

    Google Scholar 

  • Dijkgraaf S (1968) Electroreception in the catfish,Amiurus nebulosus. Experientia 24:187–188

    Google Scholar 

  • Dijkgraaf S, Kalmijn AJ (1962) Verhaltensversuche zur Funktion der Lorenzinischen Ampullen. Naturwissenschaften 49:400

    Google Scholar 

  • Fessard A, Szabo T (1974) Physiology of electroreceptors. In: Fessard A (ed) Electroreceptors and other specialized receptors in lower vertebrates. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol III/3, pp 59–124)

    Google Scholar 

  • Flock Å (1965) Electronmicroscopical and electrophysiological studies on the lateral line canal organ. Acta Oto-laryngol Suppl 199:1–90

    Google Scholar 

  • Fritzsch B (1981 a) The pattern of lateral-line afferents in Urodeles. A horseradish-peroxidase study. Cell Tissue Res 218:581–594

    Google Scholar 

  • Fritzsch B (1981 b) Electroreceptors and direction specific arrangements in the lateral-line system of salamanders? Z Naturforsch 36c: 493–495

    Google Scholar 

  • Fritzsch B, Wahnschaffe U (1983) The electroreceptive ampullary organs of urodeles. Cell Tissue Res 229:483–503

    Google Scholar 

  • Görner P (1976) Source localization with labyrinth and lateral line in the clawed toad (Xenopus laevis). In: Schuijf A, Hawkins AD (eds) Sound reception in fish. Elsevier, Amsterdam, pp 171–184

    Google Scholar 

  • Hensel H, Bromm B, Nier K (1975) Effect of ethyl m-aminobenzoate MS 222 on ampullae of Lorenzini and lateral line organs. Experientia 31:958–960

    Google Scholar 

  • Hetherington TE, Wake MH (1979) The lateral-line system in larvalIchthyophis (Amphibia: Gymnophiona) Zoomorphol 93:209–225

    Google Scholar 

  • Himstedt W, Kopp J, Schmidt W (1982) Electroreception guides feeding behaviour in amphibians. Naturwissenschaften 69:552

    Google Scholar 

  • Hopkins CD (1976) Stimulus filtering and electroreception: tuberous electroreceptors in three species of gymnotoid fish. J Comp Physiol 111:171–207

    Google Scholar 

  • Jørgensen JM (1980) The morphology of the Lorenzinian ampullae of the sturgeonAcipenser ruthenus (Pisces: Chondrosteil). Acta Zool (Stockh) 61:87–92

    Google Scholar 

  • Jørgensen JM (1982) Fine structure of the ampullary organs of the BichirPolypterus smegalus Cuvier, 1829 (Pisces: Brachiopterygii) with some notes on the phylogenetic development of electroreceptors. Acta Zool (Stockh) 63:211–217

    Google Scholar 

  • Jørgensen JM, Flock Å, Wersall J (1972) The Lorenzinian ampullae ofPolyodon spathula. Z Zellforsch 130:362–377

    Google Scholar 

  • Kalmijn AJ (1974) The detection of electric fields from inanimate and animate sources other than electric organs. In: Fessard AE (ed) Electroreceptors and other specialized receptors in lower vertebrates. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol III/3, pp 147–200)

    Google Scholar 

  • Kroese ABA, van der Zalm JM, van den Bercken J (1978) Frequency response of the lateral-line organ ofXenopus laevis. Pflügers Arch 375:167–175

    Google Scholar 

  • Kroese ABA, van der Zalm JM, van den Bercken J (1980) Extracellular receptor potentials from the lateral-line organ ofXenopus laevis. J Exp Biol 86:63–77

    Google Scholar 

  • Lissmann HW, Machin KE (1958) The mechanism of object location inGymnarchus niloticus and similar fish. J Exp Biol 35:451–486

    Google Scholar 

  • Lowe DA, Russell IJ (1982) The central projections of lateral line and cutaneous sensory fibres (VII and X) inXenopus laevis. Proc R Soc Lond B 216:279–297

    Google Scholar 

  • Malbranc M (1876) Von der Seitenlinie und ihren Sinnesorganen bei Amphibien. Z Wiss Zool 26:24–68

    Google Scholar 

  • McCreery DB (1977) Two types of electroreceptive lateral lemniscal neurons of the lateral line lobe of the catfishIctalurus nebulosus; connections from the lateral line nerve and steady state frequency response characteristics. J Comp Physiol 113:317–339

    Google Scholar 

  • Münz H (1979) Morphology and innervation of the lateral line system inSarotherodon niloticus (L.) (Cichlidae, Teleostei). Zoomorphology 93:73–86

    Google Scholar 

  • Münz H, Claas B (1982) Functional differences between lateral line neuromasts. Neurosci Lett [Suppl] 10:343

    Google Scholar 

  • Münz H, Claas B, Fritzsch B (1982) Electrophysiological evidence of electroreception in the axolotlSiredon mexicanum. Neurosci Lett 28:107–111

    Google Scholar 

  • Murray RM (1962) The response of the ampullae of Lorenzini of elasmobranchs to electrical stimulation. J Exp Biol 39:119–128

    Google Scholar 

  • Murray RW (1965) Electroreceptor mechanisms: the relation of impulse frequency to stimulus strength and response to pulsed stimuli in the ampullae of Lorenzini of elasmobranchs. J Physiol (London) 180:592–606

    Google Scholar 

  • Northcutt RG (1980) Anatomical evidence of electroreception in the coelacanth (Latimeria chalumnae). Zentralbl Veterinärmed Reihe C 9:289–295

    Google Scholar 

  • Peters RC, Bretschneider F (1972) Electric phenomena in the habitat of the catfishIctalurus nebulosus LeS. J Comp Physiol 81:345–362

    Google Scholar 

  • Peters RC, Buwalda RJA (1972) Frequency response of the electroreceptors (‘small pit organs’) of the catfish,Ictalurus nebulosus LeS. J Comp Physiol 79:29–38

    Google Scholar 

  • Roth A (1968) Electroreception in the catfish,Amiurus nebulosus. Z Vergl Physiol 61:196–202

    Google Scholar 

  • Roth A (1969) Elektrische Sinnesorgane beim ZwergwelsIctalurus nebulosus (Amiurus nebulosus). Z Vergl Physiol 65:368–388

    Google Scholar 

  • Roth A (1973) Electroreceptors in Brachioterygii and Dipnoi. Naturwissenschaften 60:106

    Google Scholar 

  • Roth A (1975) Central neurons involved in the electroreception of the catfishKryptopterus. J Comp Physiol 100:135–146

    Google Scholar 

  • Roth A, Tscharntke H (1976) Ultrastructure of the ampullary electroreceptors in lungfish and Brachiopterygii. Cell Tissue Res 173:95–108

    Google Scholar 

  • Russell IJ (1971) The role of the lateral line efferent system inXenopus laevis. J Exp Biol 54:643–658

    Google Scholar 

  • Russell IJ (1976) Amphibian lateral line receptors. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 513–550

    Google Scholar 

  • Schwartz E (1974) Lateral-line mechano-receptors in fishes and amphibians. In: Fessard AE (ed) Electroreceptors and other specialized receptors in lower vertebrates. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol III/3, pp 147–200)

    Google Scholar 

  • Strelioff D, Sokolich WG (1981) Stimulation of lateral line sensory cells. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York Heidelberg Berlin, pp 481–506

    Google Scholar 

  • Suga N (1967) Electrosensitivity of canal and free neuromast organs in a gymnotid electric fish. J Comp Neurol 131:453–458

    Google Scholar 

  • Szabo T (1974) Anatomy of the specialized lateral line organs of electroreception. In: Fessard AE (ed) Electroreceptors and other specialized receptors in lower vertebrates. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, vol III/3, pp 13–58)

    Google Scholar 

  • Teeter JH, Szamier RB, Bennett MVL (1980) Ampullary electroreceptors in the sturgeonScaphirhynchus platorhynchus (Rafinesque). J Comp Physiol 138:213–223

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Münz, H., Claas, B. & Fritzsch, B. Electroreceptive and mechanoreceptive units in the lateral line of the axolotlAmbystoma mexicanum . J. Comp. Physiol. 154, 33–44 (1984). https://doi.org/10.1007/BF00605387

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00605387

Keywords

Navigation