Skip to main content
Log in

Shock synthesis and synthesis-assisted shock consolidation of suicides

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Shock-induced chemical synthesis and synthesis-assisted consolidation of high-temperature materials (suicides) were investigated. Niobium, molybdenum, and titanium powders mixed with silicon powders were chosen as reactant materials for shock-induced synthesis of silicides. In parallel experiments, these reactant materials were also respectively mixed with inert intermetallic compound powders of NbSi2, MoSi2, and Ti5Si3 in different proportions and were shock consolidated. Shock processing was carried out using a modification of the experimental set-up developed by Sawaoka and Akashi. The shock waves were generated in the materials by the impact of a flyer plate at a velocity of 2 km sec−1. An explosive plane-wave generator was used to initiate the main explosive charge to accelerate the flyer plate. The passage of shock waves of sufficient pressure and temperature induced a highly exothermic and self-sustaining reaction between reactant materials. The shock-synthesized intermetallic compounds and the heat of reaction enhanced bonding between inert matrix materials. The proportion of reactant powder mixtures blended with inert intermetallic materials plays a very important role in the synthesis-assisted consolidation process. Characterization of compacts was done by optical microscopy, scanning electron microscopy, and X-ray diffraction. A preliminary analysis of shock-induced chemical reactions is conducted; it predicts a 30% increase in shock pressure and shock-wave velocity over those in unreacted powders. For shock synthesis, the profuse formation of voids indicates that melting of the material occurred; in contrast, unreacted regions did not exhibit porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Westbrook,Metall. Trans.8A (1977) 1327.

    CAS  Google Scholar 

  2. H. A. Lipsitt, D. Shechtman, andR. E. Schafrik,ibid.6A (1975) 1991.

    CAS  Google Scholar 

  3. D. Shechtman, M. J. Blackburn andH. A. Lipsitt,ibid.5A (1974) 1373.

    Article  ADS  Google Scholar 

  4. Z. A. Munir,Ceram. Bull.67 (1988) 342.

    CAS  Google Scholar 

  5. P. S. DeCarli, US Patent 3238019 March, (1966).

  6. P. S. DeCarli andJ. C. Jamieson,133 (1961) 821.

    Google Scholar 

  7. S. S. Batsanov, A. A. Deribas, E. V. Dulepov, M. G. Ermakov andV. M. Kudinov,Comb. Expl. Shock Waves USSR1 (1965) 47.

    Article  Google Scholar 

  8. A. N. Dremin andO. N. Breusov,Russ. Chem. Rev.37 (1968) 392.

    Article  Google Scholar 

  9. R. A. Graham, B. Morosin, E. L. Venturini andM. J. Carr,Ann. Rev. Mater. sci.16 (1986) 315.

    Article  CAS  Google Scholar 

  10. Y. Kimura,Jpn. J. Appl. Phys. 2 (1963) 312.

    Article  CAS  ADS  Google Scholar 

  11. Y. Horie, R. A. Graham andI. K. Simonsen,Mater. Lett.3 (1985) 354.

    Article  CAS  Google Scholar 

  12. I. K. Simonsen, Y. Horie, R. A. Graham andM. J. Carr,ibid.5 (1987) 75.

    Article  CAS  Google Scholar 

  13. A. B. Sawaoka andT. Akashi, US Patent 4655830 (1987).

  14. T. B. Massalski “Binary Alloy Phase Diagrams” (American Society for Metals, Metals Park, Ohio, 1986).

    Google Scholar 

  15. F. R. Norwood, R. A. Graham andA. Sawaoka, in “Shock Waves in Condensed Matter”, edited by Y. M. Gupta (Plenum, New York, 1986) p. 837.

    Google Scholar 

  16. Y. Horie andM. J. Kipp,J. Appl. Phys.63 (1988) 5718.

    Article  CAS  ADS  Google Scholar 

  17. M. Yoshida, Mixture Program, Report, Center for Explosives Technology Research, New Mexico Institute of Mining and Technology, Socorro, New Mexico, 1986.

  18. L. V. Altshuler,Sov. Phys.8 (1965) 52.

    Article  ADS  Google Scholar 

  19. M. A. Meyers andS. L. Wang,Acta Metall36 (1988) 925.

    Article  CAS  Google Scholar 

  20. O. Kubaschewski andC. B. Alcock, “Metallurgical Thermochemistry” (Pergamon, New York, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L.H., Meyers, M.A. Shock synthesis and synthesis-assisted shock consolidation of suicides. J Mater Sci 26, 601–611 (1991). https://doi.org/10.1007/BF00588294

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00588294

Keywords

Navigation