Skip to main content
Log in

K efflux through inward rectifying K channels in voltage clamped Purkinje fibers

  • Excitable Tissues And Central Nervous Physiology
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The42K efflux was measured in voltage clamped sheep Purkinje fibers. The voltage dependence of the K efflux can be described as N-shaped, showing a negative slope region. At potentials negative to −30 mV, the K efflux is largely due to K flowing through a channel which rectifies in the inward direction and which is blocked by external application of 20 mM Cs+. At potentials positive to −30 mV an outward rectifier dominates the shape of the K effluxvoltage relationship. This component is insensitive to short external application of Cs+. Both components were also found when Na+ was replaced by tetramethylammonium.

When the steady-state current-voltage relationship is compared with the K efflux one can conclude that the outward rectifying K flux largely determines the shape of this curve at positive membrane potentials, while the negative slope region of the K efflux correlates with the negative slope of the steady-state current-voltage relation. The K efflux is only slightly enhanced by stimulation of the preparation, corroborating the finding of inward-going rectification of the K channel.

Aclamp program repetitively activating the positive dynamic current e.g. by alternating the membrane potential between −70 and +10 mV, increases the K efflux by about 50% as compared to the efflux measured in steady-state at this positive membrane potential. 4-Aminopyridine suppresses both this extra K efflux, and the positive dynamic current. It is concluded that K ions contribute to the positive dynamic current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelman, W. J., Senft, J. P.: Voltage clamp studies on the effect of internal cesium ion on sodium and potassium currents in the squid giant axon. J. Gen. Physiol.50, 279–293 (1966)

    Google Scholar 

  • Armstrong, C. M.: Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. J. Gen. Physiol.54, 553–588 (1969)

    Google Scholar 

  • Attwell, D., Cohen, J., Eisner, D., Ohba, M., Ojeda, C.: The steady state TTX-sensitive (“Window”) sodium current in cardiac Purkinje fibres. Pflügers Arch.379, 137–142 (1979)

    Google Scholar 

  • Baumgarten, C. M., Isenberg, G.: Depletion and accumulation of potassium in the extracellular clefts of cardiac Purkinje fibers during voltage clamp hyperpolarization and depolarization. Pflügers Arch.368, 19–31 (1977)

    Google Scholar 

  • Beaugé, L. A., Sjodin, R. A.: Transport of caesium in frog muscle. J. Physiol.194, 105–123 (1968)

    Google Scholar 

  • Bezanilla, F., Armstrong, C. M.: Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J. Gen. Physiol.60, 588–608 (1972)

    Google Scholar 

  • Carmeliet, E. E.: Chloride and potassium permeability in cardiac Purkinje fibers. Aggregaatsthesis. Presses Académiques Européennes. S. C. Bruxelles (152 p.) 1961

    Google Scholar 

  • Carmeliet, E.: The effect of cesium ions on42K efflux in cardiac Purkinje fibers. In: Biophysical aspects of cardiac muscle (M. Morad, ed.), pp. 143–151 Philadelphia: Academic Press 1978

    Google Scholar 

  • Carmeliet, E.: Decrease of K efflux and influx by external Cs ions in cardiac Purkinje and muscle cells. Pflügers Arch.383, 143–150 (1980)

    Google Scholar 

  • Carmeliet, E. E., Horres, C. R., Lieberman, M., Vereecke, J. S.: Developmental aspects of potassium flux and permeability of the embryonic chick heart. J. Physiol.254 673–692 (1976)

    Google Scholar 

  • Carmeliet, E., Isenberg, G., Vereecke, J.: Rectifier properties, of the potassium efflux in voltage clamped Purkinje fibres. J. Physiol.295, 82–83 (1979)

    Google Scholar 

  • Cleemann, L., Morad M.: Extracellular potassium accumulation in voltage clamped frog ventricular muscle. J. Physiol.286, 83–111 (1979)

    Google Scholar 

  • Deck, K. A., Trautwein, W.: Ionic currents in cardiac excitation. Pflügers Arch.280, 63–80 (1964)

    Google Scholar 

  • Deck, K. A., Kern, R., Trautwein, W.: Voltage clamp technique in mammalian cardiac fibres. Pflügers Arch.280, 50–62 (1964)

    Google Scholar 

  • di Francesco, D., Ohba, M.: Dependence of the apparent reversal potential for the pace-maker current iK 2 on its degree of activation in cardiac Purkinje fibres. J. Physiol280, 73P-74P (1978)

    Google Scholar 

  • Dudel, J., Peper, K., Rüdel, R., Trautwein, W.: The dynamic chloride component of membrane current in Purkinje fibers. Pflügers Arch.295, 197–212 (1967a)

    Google Scholar 

  • Dudel, J., Peper, K., Rüdel, R., Trautwein, W.: The potassium component of membrane current in Purkinje fibers. Pflügers Arch.296, 308–327 (1967b)

    Google Scholar 

  • Gillespie, J. I., Hutter, O. F.: The actions of 4-aminopyridine on the delayed potassium current in skeletal muscle fibres. J. Physiol.252, 70P-71P (1975)

    Google Scholar 

  • Haas, H. G., Kern, R.: Potassium fluxes in voltage clamped Purkinje fibres. Pflügers Arch.291, 69–84 (1966)

    Google Scholar 

  • Haas, H. G., Glitsch, H. G., Kern, R.: Kalium-Fluxe und Membranpotential am Froschvorhof in Abhängigkeit von der Kalium-Außenkonzentration. Pflügers Arch.288, 43–64 (1966)

    Google Scholar 

  • Hauswirth, O., Noble, D., Tsien, R. W.: Separation of the pacemaker and plateau components of delayed rectification in cardiac Purkinje fibres. J. Physiol.225, 211–235 (1972)

    Google Scholar 

  • Hille, B., Schwarz, W.: Potassium channels as multi-ion single-file pores. J. Gen. Physiol.72, 409–442 (1978)

    Google Scholar 

  • Hodgkin, A. L., Keynes, R. D.: The potassium permeability of a giant nerve fibre. J. Physiol.128, 61–88 (1955)

    Google Scholar 

  • Hodgkin, A. L., Horowicz, P.: The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J. Physiol.148, 127–160 (1959)

    Google Scholar 

  • Hodgkin, A. L., Huxley, A. F., Katz, B.: Ionic currents underlying activity in the giant axon of the squid. Arch. Sci. Physiol.3, 129–150 (1949)

    Google Scholar 

  • Hutter, O. F., Noble, D.: Rectifying properties of heart muscle. Nature188, 495 (1960)

    Google Scholar 

  • Isenberg, G.: Cardiac Purkinje fibers: cesium as a tool to block inward rectifying potassium currents. Pflügers Arch.365, 99–106 (1976)

    Google Scholar 

  • Isenberg, G.: The positive dynamic current of the cardiac Purkinje fiber is not a chloride but a potassium current. Pflügers Arch.377, R5 (1978)

    Google Scholar 

  • Johnson, E. A., Lieberman, M.: Heart: excitation and contraction. Ann. Rev. Physiol.33, 479–532 (1971)

    Google Scholar 

  • Juncker, D. F., Greene, E. A., Stish, R., Lorber, V.: Potassium efflux from amphibian atrium during the cardiac cycle. A reexamination. Circ. Res.30, 350–357 (1972)

    Google Scholar 

  • Katz, B.: Les, constantes électriques de la membrane du muscle. Arch. Sci. Physiol.3, 285–300 (1949)

    Google Scholar 

  • Kenyon, J. L., Gibbons, W. R.: Influence of chloride potassium and tetraethylammonium on the early outward current of sheep cardiac Purkinje fibers. J. Gen. Physiol.73, 117–138 (1979a)

    Google Scholar 

  • Kenyon, J. L., Gibbons, W. R.: 4-Aminopyridine and the early outward current of sheep cardiac Purkinje fibers. J. Gen. Physiol.73, 139–157 (1979b)

    Google Scholar 

  • Keynes, R. D.: The leakage of radioactive potassium from stimulated nerve. J. Physiol.113, 99–114 (1951)

    Google Scholar 

  • Keynes, R. D., Lewis, P. R.: The resting exchange of radioactive potassium in crab nerve. J. Physiol.113, 73–98 (1951)

    Google Scholar 

  • McAllister, R. E., Noble, D.: The time and voltage dependence of the slow outward current in cardiac Purkinje fibres. J. Physiol.186, 632–662 (1966)

    Google Scholar 

  • McAllister, R. E., Noble, D., Tsien, R. W.: Reconstruction of the electrical activity of cardiac Purkinje fibres. J. Physiol.251, 1–59 (1975)

    Google Scholar 

  • Miura, D. S., Hoffman, B. F., Rosen, M. R.: The effect of extracellular potassium on the intracellular potassium ion activity and transmembrane potentials of beating canine cardiac Purkinje fibres. J. Gen. Physiol.69, 463–474 (1977)

    Google Scholar 

  • Mobley, B. A., Page, E.: The surface area of sheep cardiac Purkinje fibres. J. Physiol.220, 547–563 (1972)

    Google Scholar 

  • Noble, D.: A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J. Physiol.160, 317–352 (1962)

    Google Scholar 

  • Noble, D., Tsien, R. W.: The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J. Physiol.195, 185–214 (1968)

    Google Scholar 

  • Noble, D., Tsien, R. W.: Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibres. J. Physiol.200, 205–231 (1969)

    Google Scholar 

  • Pelhate, M., Pichon, Y.: Selective inhibition of potassium current in the giant axon of the cockroach. J. Physiol.242, 90P-91P (1974)

    Google Scholar 

  • Peper, K., Trautwein, W.: A membrane, current related to the plateau of the action potential of Purkinje fibers. Pflügers Arch.303, 108–123 (1960)

    Google Scholar 

  • Persoff, D. A.: A comparison of methods for measuring efflux of labelled potassium from contracting rabbit atria. J. Physiol.152, 354–366 (1960)

    Google Scholar 

  • Ramon, F., Anderson, N., Joyner, R. W., Moore, J. W.: Axon voltage-clamp simulations. IV. A multicellular preparation. Biophys. J.15, 55–69 (1975)

    Google Scholar 

  • Ussing, H. H.: Transport of ions across cellular membranes. Physiol. Rev.29, 127–155 (1949)

    Google Scholar 

  • Weidmann, S.: Effect of current flow on the membrane potential of cardiac muscle. J. Physiol.115, 227–236 (1951)

    Google Scholar 

  • Weidmann, S.: Rectifier properties of Purkinje fibers. Am. J. Physiol.183, 671 (Abstract) (1955)

    Google Scholar 

  • Yeh, J. Z., Oxford, G. S., Wu C. H., Narahashi, T.: Dynamics of aminopyridine block of potassium channels in squid axon membrane. J. Gen. Physiol.68, 519–535 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by F.W.G.O. Belgium no 20487 and by the Deutsche Forschungsgemeinschaft SFB38G2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vereecke, J., Isenberg, G. & Carmeliet, E. K efflux through inward rectifying K channels in voltage clamped Purkinje fibers. Pflugers Arch. 384, 207–217 (1980). https://doi.org/10.1007/BF00584555

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00584555

Key words

Navigation