Skip to main content
Log in

Effects of veratrine and tetrodotoxin on the frog lens potential in normal and calcium-free media

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The membrane potentials of posterior fibers of the isolated American bullfrog lens were measured in Ringer solution containing various external Ca2+ concentrations ([Ca]0) by using a conventional glass microelectrode technique. The reduction or removal of [Ca]0 evoked a rapid depolarization of the lens potential whereas the increase of [Ca]0 had almost no effects on the membrane potential. The magnitude of depolarization in Ca2+-free medium was augmented by adding veratrine but reduced by either the addition of tetrodotoxin (TTX) or the reduction of external Na+ concentration. A slight depolarization still remained after the blockade of Na-channels by adding TTX and developed progressively during a successive exposure of lens to Ca2+-free media. It was concluded that veratrine-sensitive rapid an large depolarization in the frog lens fibers bathed in Ca2+-free medium results from a marked elevation of Na+ permeability but that the TTX-insensitive time-dependent depolarization may depend on the loss of K+ content in lens fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike N (1982) Hyperpolarization of mammalian skeletal muscle fibers in K-free media. Am J Physiol 242:C12–18

    Google Scholar 

  • Becker B, Cotlier E (1965) The efflux of 86 rubidium from the rabbit lens. Invest Ophthalmol 4:117–121

    Google Scholar 

  • Bentley PJ, Cruz E (1978) The role of Ca2+ in maintaining the Na and K content of the amphibian lens. Exp Eye Res 27:335–341

    Google Scholar 

  • Candia OA (1980) The influence of calcium-free media on the electrical properties of the isolated toad lens. Exp Eye Res 30:193–201

    Google Scholar 

  • Curran PF, Gill JR (1962) The effect of calcium on sodium transport by frog skin. J Gen Physiol 45:625–641

    Google Scholar 

  • Delamere NA, Duncan G (1977) A comparison of ion concentrations, potentials and conductances of amphibian, bovine and cephalopod lenses. J Physiol (Lond) 272:167–186

    Google Scholar 

  • Delamere NA, Paterson CA (1978) The influence of calcium-free EGTA solution upon membrane permeability in the crystalline lens of the frog. J Gen Physiol 71:581–593

    Google Scholar 

  • Delamere NA, Paterson CA (1979) The influence of calcium-free solution upon permeability characteristics of the rabbit lens. Exp Eye Res 28:45–53

    Google Scholar 

  • Duncan G, Bushell AR (1975) Ion analyses of human cataractous lenses. Exp Eye Res 20:223–230

    Google Scholar 

  • Frank GB (1958) Effect of veratrine on muscle fiber membrane and on negative after-potential. J Neurophysiol 21:263–278

    Google Scholar 

  • Gernshfeld NL, Shanes AM (1959) The influence of high hydrostatic pressure on cocaine and veratrine action in a vertebrate nerve. J Gen Physiol 42:647–653

    Google Scholar 

  • Goldman DE (1943) Potential, impedance and rectification in membranes. J Gen Physiol 2:37–49

    Google Scholar 

  • Harris JE, Gehrsitz LB (1951) Significance of changes in potassiuim and sodium content of the lens. Am J Ophthalmol 34:131–138

    Google Scholar 

  • Harris JE, Gehrsitz LB, Nordquist L (1953) The in vitro reversal of the lenticular cation shift induced by cold or calcium deficiency. Am J Ophthalmol 36:39–49

    Google Scholar 

  • Hille B (1968) Pharmacological modifications of the sodium channels of the frog nerve. J Gen Physiol 51:199–219

    Google Scholar 

  • Jedziniak JA, Nicoli DF, Yates EM, Benedek GB (1976) On the calcium concentration of cataractous and normal human lenses and protein fractions of cataractous lenses. Exp Eye Res 23:325–332

    Google Scholar 

  • Johnson P, Bianchi CP (1971) The effect of veratridine on sodiumsensitive radiocalcium uptake in frog sartorius muscle. Eur J Pharmacol 16:90–99

    Google Scholar 

  • Kimizuka J, Koketsu K (1963) Changes in the membrane permeability of frog's sartorius muscle fibers in Ca-free EGTA solution. J Gen Physiol 47:379–392

    Google Scholar 

  • MacFarlane WW, Meares JD (1958) Chemical modification of intracellularly recorded after-potentials of frog skeletal muscle. J Physiol (Lond) 142:78–96

    Google Scholar 

  • Merola LO, Kern HL, Kinoshita JH (1960) The effect of calcium on the cations of calf lens. Arch Ophthalmol 63:830–835

    Google Scholar 

  • Morrill GA, Robbins E (1967) The role of calcium in the regulation of the steady-state levels of sodium and potassium in the HeLa cell. J Gen Physiol 50:781–792

    Google Scholar 

  • Okajima Y, Akaike N (1982) Effect of ouabain, lithium and cooling on the frog lens fiber potential. Jpn J Physiol 32:45–54

    Google Scholar 

  • Rae JL (1974) Voltage compartments in the lens. Exp Eye Res 19:235–242

    Google Scholar 

  • Shanes AM (1952) The ultraviolet spectra and neurophysiological effect of “veratrine” alkaloids. J Pharmacol Exp Ther 105:216–231

    Google Scholar 

  • Shanes AM (1958) Electrochemical aspects of physiological and pharmacological action in excitable cells. Pharmacol Rev 10:59–273

    Google Scholar 

  • Spector A, Rothschild C (1973) The effect of calcium upon the reaggregation of bovine alpha crystallin. Invest Ophthalmol 12:225–231

    Google Scholar 

  • Spector A, Adams D, Krul K (1974) Calcium and high molecular weight protein aggregates in bovine and human lens. Invest Ophthalmol 13:982–990

    Google Scholar 

  • Sperelakis N, Pappano AJ (1969) Increase in PNa and PK of cultured heart cells produced by veratridine. J Gen Physiol 53:97–114

    Google Scholar 

  • Taura Y, Murata T, Akaike N (1979) Topographical aspects of crystalline lens potential. Comp Biochem Physiol 63:475–480

    Google Scholar 

  • Thoft RA, Kinoshita JH (1965) The effect of calcium on rat lens permeability. Invest Ophthalmol 4:122–218

    Google Scholar 

  • Ulbricht W (1965) Voltage clamp studies of veratrinized frog nodes. J Cell Comp Physiol 66, Suppl 2:91–98

    Google Scholar 

  • Witt PN, Swaine CR (1957) Studies on veratrum alkaloids. XXV. Veratrine response and antiveratrinic action in frog sartorius muscle. J Pharmacol Exp Ther 120:63–74

    Google Scholar 

  • Yonemura K (1970) Depolarizations produced by veratrine in rat skeletal muscle fibers. Kumamoto Med J 23:41–55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akaike, N., Okajima, Y. Effects of veratrine and tetrodotoxin on the frog lens potential in normal and calcium-free media. Pflugers Arch. 394, 333–337 (1982). https://doi.org/10.1007/BF00583698

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00583698

Key words

Navigation