Skip to main content
Log in

Physiological color change in squid iridophores

I. Behavior, morphology and pharmacology inLolliguncula brevis

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Cephalopods generally are thought to have only static iridophores, but this report provides qualitative and quantitative evidence for active control of certain iridescent cells in the dermis of the squidLolliguncula brevis. In vivo observations indicate the expression of iridescence to be linked to agonistic or reproductive behavior. The neuromodulator acetylcholine (ACh) induced dramatic optical changes in active iridophores in vitro, whereas ACh had little effect on passive iridophores elsewhere in the mantle skin. Bath application of physiological concentrations of ACh (10-7M to 10-6M) to excised dermal skin layers transformed the active iridophores from a non-reflective diffuse blue to brightly iridescent colors, and this reaction was reversible and repeatable. The speed of change to iridescent in vitro corresponded well to the speed of changes in the living animal. Pharmacological results indicate the presence of muscarinic receptors in this system and that Ca++ is a mediator for the observed changes. Although ACh is present in physiological quantities in the dermal iridophore layer, it is possible that ACh release is not controlled directly by the nervous system because electrophysiological stimulation of major nerves in the periphery resulted in no iridescence inL. brevis; nor did silver staining or transmission electron microscopy reveal neuronal elements in the iridophore layer. Thus, active iridophores may be controlled by ACh acting as a hormone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold JM (1967) Organellogenesis of the cephalopod iridophore: cytomembranes in development. J Ultrastruc Res 20:410–420

    Google Scholar 

  • Atlas D, Adler M (1981) α-Adrenergic antagonists as possible calcium channel inhibitors. Proc Natl Acad Sci USA 78(2):1237–1241

    Google Scholar 

  • Babcock DF, First NL, Lardy HA (1976) Action of ionophore A23187 at the cellular level. Separation of effects at the plasma and mitochondrial membranes. J Biol Chem 251(13):3881–3886

    Google Scholar 

  • Bagnara JT (1958) Hypophyseal control of guanophores in anuran larvae. J Exp Zool 137(2):265–279

    Google Scholar 

  • Bagnara JT, Hadley ME (1973) Chromatophores and color change. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Bagnara JT, Taylor JD, Hadley ME (1968) The dermal chromatophore unit. J Cell Biol 38:67–79

    Google Scholar 

  • Brocco SL, Cloney RA (1980) Reflector cells in the skin ofOctopus dofleini. Cell Tissue Res 205:167–186

    Google Scholar 

  • Butman BT, Obika M, Tchen T, Taylor JD (1979) Hormone-induced pigment translocations in amphibian dermal iridophores, in vitro: changes in cell shape. J Exp Zool 208:17–34

    Google Scholar 

  • Carafoli E, Crompton M (1978) The regulation of intracellular calcium by mitochondria. Ann NY Acad Sci 307:269–284

    Google Scholar 

  • Cloney RA, Brocco SL (1983) Chromatophore organs, reflector cells, iridocytes and leucophores in cephalopods. Am Zool 23:581–592

    Google Scholar 

  • Cooper KM, Hanlon RT (1986) Correlation of iridescence with changes in iridophore platelet ultrastructure in the squidLolliguncula brevis. J Exp Biol 121:451–455

    Google Scholar 

  • Cooper KM, Hanlon RT, Budelmann BU (1990) Physiological color change in squid iridophores. II. Ultrastructural mechanisms inLolliguncula brevis. Cell Tissue Res 259:15–24

    Google Scholar 

  • Cormier MJ (1983) Calmodulin: the regulation of cellular function. In: Spiro TG (ed) Calcium in biology. John Wiley and Sons, New York, pp 53–106

    Google Scholar 

  • Cott HB (1940) Adaptive coloration in animals. Methuen and Co. Ltd., London

    Google Scholar 

  • Dubas F, Hanlon RT, Ferguson GP, Pinsker HM (1986) Localization and stimulation of chromatophore motoneurons in the brain of the squid,Lolliguncula brevis. J Exp Biol 121:1–25

    Google Scholar 

  • Ferguson GP, Martini FM, Pinsker HM (1988) Chromatophore motor fields in the squid,Lolliguncula brevis. J Exp Biol 134:281–295

    Google Scholar 

  • Florey E (1969) Ultrastructure and function of cephalopod chromatophores. Am Zool 9:429–442

    Google Scholar 

  • Florey E, Cahill MA (1980) Cholinergic motor control of sea urchin tube feet: evidence for chemical transmission without synapses. J Exp Biol 88:281–292

    Google Scholar 

  • Florey E, Kriebel ME (1969) Electrical and mechanical responses of chromatophore muscle fibers of the squid,Loligo opalescens, to nerve stimulation and drugs. Z Vergl Physiol 65:98–130

    Google Scholar 

  • Florey E, Dubas F, Hanlon RT (1985) Evidence for L-glutamate as a transmitter substance of motoneurons innervating squid chromatophore muscles. Comp Biochem Physiol 82(C):259–268

    Google Scholar 

  • Hadley ME (1987) Calcium-dependent irreversible effect of ionophore A23187 on melanophores. Pigment Cell Res 1:57–61

    Google Scholar 

  • Hadley ME, Goldman JM (1970) The physiological regulation of the amphibian iridophore. J Invest Dermatol 54:88

    Google Scholar 

  • Hanker JS, Thornburg LP, Yates PE, Moore III HG (1973) The demonstration of cholinesterases by the formation of osmium blacks at the sites of Hatchett's brown. Histochemie 37:223–242

    Google Scholar 

  • Hanlon RT (1982) The functional organization of chromatophores and iridescent cells in the body patterning ofLoligo plei (Cephalopoda: Myopsida). Malacologia 23(1):89–119

    Google Scholar 

  • Hanlon RT, Messenger JB (1988) Adaptive coloration in young cuttlefish (Sepia officinalis L.): the morphology and development of body patterns and their relation to behaviour. Phil Trans R Soc Lond [Biol] 320:437–487

    Google Scholar 

  • Hanlon RT, Hixon RF, Hulet WH (1983) Survival, growth, and behavior of the loliginid squidsLoligo plei, Loligo pealei, andLolliguncula brevis (Mollusca: Cephalopoda) in closed sea water systems. Biol Bull 165(3):637–685

    Google Scholar 

  • Holmes W (1943) Silver staining of nerve axons in paraffin sections. Anat Rec 86:157–185

    Google Scholar 

  • Howell BJ, Gilbert DL (1976) pH-temperature dependence of the hemolymph of the squid,Loligo pealei. Comp Biochem Physiol 55A:287–289

    Google Scholar 

  • Ide H (1973) Effects of ACTH on melanophores and iridophores isolated from bullfrog tadpoles. Gen Comp Endocrinol 21:390–397

    Google Scholar 

  • Kasukawa H, Oshima N, Fujii R (1986) Control of chromatophore movements in dermal chromatic units of blue damselfish — II. The motile iridophore. Comp Biochem Physiol 83 C:1–7

    Google Scholar 

  • Kawaguti S, Ohgishi S (1962) Electron microscopic study on iridophores of a cuttlefish,Sepia esculenta. Biol J Okayama Univ 8:115–129

    Google Scholar 

  • Messenger JB (1974) Reflecting elements in cephalopod skin and their importance for camouflage. J Zool Lond 174:387–395

    Google Scholar 

  • Messenger JB (1979) The eyes and skin ofOctopus: compensating for sensory deficiencies. Endeavour 3:92–98

    Google Scholar 

  • Messenger JB, Miyan JA (1986) Neural correlates of colour change in cuttlefish. J Exp Biol 125:395–400

    Google Scholar 

  • Mirow S (1972) Skin color in the squidsLoligo pealii andLoligo opalescens. II. Iridophores. Z Zellforsch 125:176–190

    Google Scholar 

  • Moynihan M (1985) Communication and noncommunication by cephalopods. Indiana University Press, Bloomington, IN

    Google Scholar 

  • Novales RR (1977) The effect of the divalent cation ionophore A23187 on amphibian melanophores and iridophores. J Invest Dermatol 69:446–450

    Google Scholar 

  • Oshima N, Sato M, Kumazawa T, Okeda N, Kasukawa H, Fujii R (1985) Motile iridophores play the leading role in damselfish coloration. In: Bagnara J, Klaus SN, Paul E, Schartl M (eds) Pigment Cell 1985: Biological, molecular and clinical aspects of pigmentation. University of Tokyo Press, Tokyo, pp 241–246

    Google Scholar 

  • Packard A, Hochberg FG (1977) Skin patterning inOctopus and other genera. Symp Zool Soc Lond 38:191–231

    Google Scholar 

  • Prozialeck WC, Weiss B (1985) Mechanisms of pharmacologically altering calmodulin activity. In: Rubin RP, Weiss GB, Putney Jr. JW (eds) Calcium in biological systems. Plenum Press, New York London, pp 255–264

    Google Scholar 

  • Rubin RP (1982) Calcium and cellular secretion. Plenum Press, New York London

    Google Scholar 

  • Rubin RP (1985) Historical and biological aspects of calcium action. In: Rubin RP, Weiss GB, Putney JW (eds) Calcium in biological systems. Plenum Press, New York London, pp 5–33

    Google Scholar 

  • Taylor JD (1969) The effects of intermedin on the ultrastructure of amphibian iridophores. Gen Comp Endocrinol 12:405–416

    Google Scholar 

  • Taylor SE, Teague RS (1976) Thebeta adrenergic receptors of chromatophores of the frog,Rana pipiens. J Pharmacol Exp Ther 199(1):222–235

    Google Scholar 

  • Winkelmann RK, Schmit RW (1957) A simple silver method for nerve axoplasm. Proc Staff Meet Mayo Clinic 32:217–222

    Google Scholar 

  • Young RE, Arnold JM (1982) The functional morphology of a ventral photophore from the mesopelagic squid,Abralia trigonurd. Malacologia 23(1):135–163

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanlon, R.T., Cooper, K.M., Budelmann, B.U. et al. Physiological color change in squid iridophores. Cell Tissue Res. 259, 3–14 (1990). https://doi.org/10.1007/BF00571424

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00571424

Key words

Navigation