Skip to main content
Log in

An enhanced, acoustic emission-based, single-fiber-composite test

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

In the single-fiber-composite (SFC) test, a fiber imbedded in a matrix is loaded in tension, resulting in a fragmentation of the fiber. In the conventional version of this test, the final fiber fragmentation length distribution is used with a micro-mechanical model to determine the average fiber/matrix interfacial shear stress. In the enhanced version of this test, one also determines the applied stress at each fiber fracture, and from this, one can evaluate the strength of the fiber at short gage lengths. In our measurement system, we utilize an acoustic emission (AE) technique to detect the fiber fractures and to locate the fiber breaks and so determine both the fiber failure stresses as well as the fiber fragmentation lengths while the test is in progress. Critical to the success of this test is a broadband AE system that utilizes point-like AE sensors, procedures for evaluatingin situ, the wavespeed of the first wave arrival and signal processing techniques for determining the arrival time of this signal as precisely as possible for a broad range of wave shapes. Here we describe the application of such an enhanced SFC test procedure to investigate the failure of a Nicalon fiber in an epoxy matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. L. Phoenix and L. J. Tierney,Eng. Fract. Mech. 18193–215 (1983).

    Google Scholar 

  2. B. W. Rosen,AIAA J. 2(11):1985–1991 (1964).

    Google Scholar 

  3. L. T. Drzal, M. J. Rich, and P. F. Lloyd,J. Adhes. 161–30 (1982).

    Google Scholar 

  4. L. T. Drzal, M. J. Rich, M. F. Koenig, and P. F. Lloyd,J. Adhes. 16133–152 (1983).

    Google Scholar 

  5. S. H. Own, R. V. Subramanian, and S. C. Saunders,J. Matler Sci. 213912–3920 (1986).

    Google Scholar 

  6. W. D. Bascom and R. M. Jensen,J. Adhes. 19219–239 (1986).

    Google Scholar 

  7. A. N. Netravali, R. B. Henstenburg, S. L. Phoenix, and P. Schwartz,Polym. Compos. 10226–241 (1989).

    Google Scholar 

  8. W. A. Curtin,J. Matler. Sci. 265239–5253 (1991).

    Google Scholar 

  9. A. N. Netravali, S. L. Phoenix, and P. Schwartz,Polym. Compos. 10385–388 (1989).

    Google Scholar 

  10. A. Kelly and W. R. Tyson,J. Mech. Phys. Solids 13329–350 (1965).

    Google Scholar 

  11. A. Kelly,Proc. Roy. Soc. Lond. A:31995–116 (1970).

    Google Scholar 

  12. R. B. Henstenburg and S. L. Phoenix, Interfacial shear strength studies using the single-filament-composite test II: A probability model and Monte-Carlo simulation.Poly. Compos. 10385–388 (1989).

    Google Scholar 

  13. W. Weibull, A Statistical Theory of the Strength of Materials, Handlinger, Royal Swedish Academy of Engineering Sciences, No. 151, Stockholm, 1939.

  14. L. T. Drzal, 15th National SAMPE Tech. Conf., 1983, p. 190.

  15. A. N. Netravali, Z.-F. Li, W. Sachse, and H. F. Wu,J. Matler. Sci. 266631–6638 (1991).

    Google Scholar 

  16. A. N. Netravali, L. T. T. Topoleski, W. Sachse, and S. L. Phoenix,Compos. Sci. Tech. 3513–29 (1989).

    Google Scholar 

  17. Y. L. Petitcorps, R. Pailer, and R. Naslain,Compos. Sci. Tech. 35207–214 (1989).

    Google Scholar 

  18. B. T. Ma, L. S. Schadler, C. Laird, and J. C. Figueroa,Polym. Compos. 11211–216 (1990).

    Google Scholar 

  19. W. Sachse, K. Y. Kim, and P. Hsieh,Advances in Fracture Research (Vol. 5), K. Salama, K. Ravi-Chandar, D. M. R. Taplin and P. Rama, eds. (ICF-7, Pergamon Press, Oxford, 1989), pp. 3185–3196.

    Google Scholar 

  20. B. Yavin, H. E. Gallis, J. Scherf, A. Eitan, and H. D. Wagner,Polym. Compos. 12(6):436–446 (1991).

    Google Scholar 

  21. M. C. Waterbury and L. T. Drzal,J. Comp. Test. Tech. Res. 13(1):22–28 (1991).

    Google Scholar 

  22. H. D. Wagner and A. Eitan,Appl. Phys. Lett. 561965–1967 (1990).

    Google Scholar 

  23. W. Sachse, A. G. Every, and M. O. Thompson, Impact of laser pulses on composite materials, inImpact Response and Elastodynamics of Composites (AMD-Vol. 116), A. K. Mal and Y. D. S. Rajapakse, eds. (ASME, New York, 1990), pp. 51–62.

    Google Scholar 

  24. K. Y. Kim and W. Sachse, InUI'89: Conference Proceedings (Butterworth Scientific, Guildford, Surrey, U.K. 1989), pp. 18–24.

    Google Scholar 

  25. K. Y. Kim and W. Sachse,J. Acoust. Soc. Am. 86(3):875–884 (1989).

    Google Scholar 

  26. K. Y. Kim and W. Sachse,Ultrasonics 25195–203 (1987).

    Google Scholar 

  27. A. G. Every, W. Sachse, and M. O. Thompson, Materials characterization from elastic wave anisotropy images, inUltrasonic Materials Characterization IV, C. O. Ruud and R. E. Green, eds. (Plenum Press, New York, 1991), pp. 493–500.

    Google Scholar 

  28. A. C. Cohen,Technometrics 7(4):579–588 (1965).

    Google Scholar 

  29. H. Lee,Handbook of Epoxy Resins (McGraw-Hill, New York, 1967).

    Google Scholar 

  30. Dow Corning Corporation, Information About NICALON Ceramic Fiber, 1989).

  31. A. G. Metcalfe and G. K. Schmitz,Proc. 67th Meeting of the ASTM (ASTM, Philadelphia, Pennsylvania, 1964), pp. 1075–1093.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sachse, W., Netravali, A.N. & Baker, A.R. An enhanced, acoustic emission-based, single-fiber-composite test. J Nondestruct Eval 11, 251–261 (1992). https://doi.org/10.1007/BF00566415

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00566415

Key words

Navigation